Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(27): 9943-9954, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366549

RESUMO

We assessed the efficacy of ozonation as an indoor remediation strategy by evaluating how a carpet serves as a sink and long-term source of thirdhand tobacco smoke (THS) while protecting contaminants absorbed in deep reservoirs by scavenging ozone. Specimens from unused carpet that was exposed to smoke in the lab ("fresh THS") and contaminated carpets retrieved from smokers' homes ("aged THS") were treated with 1000 ppb ozone in bench-scale tests. Nicotine was partially removed from fresh THS specimens by volatilization and oxidation, but it was not significantly eliminated from aged THS samples. By contrast, most of the 24 polycyclic aromatic hydrocarbons detected in both samples were partially removed by ozone. One of the home-aged carpets was installed in an 18 m3 room-sized chamber, where its nicotine emission rate was 950 ng day-1 m-2. In a typical home, such daily emissions could amount to a non-negligible fraction of the nicotine released by smoking one cigarette. The operation of a commercial ozone generator for a total duration of 156 min, reaching concentrations up to 10,000 ppb, did not significantly reduce the carpet nicotine loading (26-122 mg m-2). Ozone reacted primarily with carpet fibers, rather than with THS, leading to short-term emissions of aldehydes and aerosol particles. Hence, by being absorbed deeply into carpet fibers, THS constituents can be partially shielded from ozonation.


Assuntos
Ozônio , Poluição por Fumaça de Tabaco , Nicotina/análise , Poluição por Fumaça de Tabaco/análise , Pisos e Cobertura de Pisos
2.
Pediatr Res ; 90(6): 1153-1160, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33654287

RESUMO

INTRODUCTION: Tobacco smoke contains numerous toxic chemicals that accumulate in indoor environments creating thirdhand smoke (THS). We investigated if THS-polluted homes differed in children's human and built-environment microbiomes as compared to THS-free homes. METHODS: Participants were n = 19 THS-exposed children and n = 10 unexposed children (≤5 years) and their caregivers. Environmental and biological samples were analyzed for THS pollutants and exposure. Swab samples were collected from the built-environment (floor, table, armrest, bed frame) and child (finger, nose, mouth, and ear canal), and 16S ribosomal RNA genes were analyzed for bacterial taxa using high-throughput DNA sequencing. RESULTS: Phylogenetic α-diversity was significantly higher for the built-environment microbiomes in THS-polluted homes compared to THS-free homes (p < 0.014). Log2-fold comparison found differences between THS-polluted and THS-free homes for specific genera in samples from the built-environment (e.g., Acinetobacter, Bradyrhizobium, Corynebacterium, Gemella, Neisseria, Staphylococcus, Streptococcus, and Veillonella) and in samples from children (esp. Corynebacterium, Gemella, Lautropia, Neisseria, Rothia, Staphylococcus, and Veillonella). CONCLUSION: When exposed to THS, indoor and children microbiomes are altered in an environment-specific manner. Changes are similar to those reported in previous studies for smokers and secondhand smoke-exposed persons. THS-induced changes in child and built-environmental microbiomes may play a role in clinical outcomes in children. IMPACT: Despite smoking bans, children can be exposed to tobacco smoke residue (i.e., thirdhand smoke) that lingers on surfaces and in settled house dust. Thirdhand smoke exposure is associated with changes in the microbiomes of the home environment and of the children living in these homes. Thirdhand smoke is associated with increased phylogenetic diversity of the home environment and changes in the abundances of several genera of the child microbiome known to be affected by active smoking and secondhand smoke (e.g., Corynebacterium, Staphylococcus, Streptococcus). Thirdhand smoke exposure by itself may induce alterations in the microbiome that play a role in childhood pathologies.


Assuntos
Características da Família , Microbiota , Poluição por Fumaça de Tabaco , Bactérias/classificação , Pré-Escolar , Humanos , Especificidade da Espécie
3.
Nicotine Tob Res ; 23(3): 592-599, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33009807

RESUMO

INTRODUCTION: Simple silicone wristbands (WB) hold promise for exposure assessment in children. We previously reported strong correlations between nicotine in WB worn by children and urinary cotinine (UC). Here, we investigated differences in WB chemical concentrations among children exposed to secondhand smoke from conventional cigarettes (CC) or secondhand vapor from electronic cigarettes (EC), and children living with nonusers of either product (NS). METHODS: Children (n = 53) wore three WB and a passive nicotine air sampler for 7 days and one WB for 2 days, and gave a urine sample on day 7. Caregivers reported daily exposures during the 7-day period. We determined nicotine, cotinine, and tobacco-specific nitrosamines (TSNAs) concentrations in WB, nicotine in air samplers, and UC through isotope-dilution liquid chromatography with triple-quadrupole mass spectrometry. RESULTS: Nicotine and cotinine levels in WB in children differentiated between groups of children recruited into NS, EC exposed, and CC exposed groups in a similar manner to UC. WB levels were significantly higher in the CC group (WB nicotine median 233.8 ng/g silicone, UC median 3.6 ng/mL, n = 15) than the EC group (WB nicotine median: 28.9 ng/g, UC 0.5 ng/mL, n = 19), and both CC and EC group levels were higher than the NS group (WB nicotine median: 3.7 ng/g, UC 0.1 ng/mL, n = 19). TSNAs, including the known carcinogen NNK, were detected in 39% of WB. CONCLUSIONS: Silicone WB show promise for sensitive detection of exposure to tobacco-related contaminants from traditional and electronic cigarettes and have potential for tobacco control efforts. IMPLICATIONS: Silicone WB worn by children can absorb nicotine, cotinine, and tobacco-specific nitrosamines, and amounts of these compounds are closely related to the child's urinary cotinine. Levels of tobacco-specific compounds in the silicone WB can distinguish patterns of children's exposure to secondhand smoke and e-cigarette vapor. Silicone WB are simple to use and acceptable to children and, therefore, may be useful for tobacco control activities such as parental awareness and behavior change, and effects of smoke-free policy implementation.


Assuntos
Cotinina/urina , Vapor do Cigarro Eletrônico/análise , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Nicotina/urina , Nitrosaminas/urina , Silicones/análise , Poluição por Fumaça de Tabaco/análise , Adolescente , Carcinógenos/análise , Criança , Pré-Escolar , Feminino , Humanos , Masculino
4.
J Trace Elem Med Biol ; 63: 126656, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33022485

RESUMO

INTRODUCTION: Environmental exposure to lead (Pb) and cadmium (Cd) are risk factors for adverse health outcomes in children and adults. This study examined whether thirdhand smoke residue contributes to Pb and Cd in settled house dust. METHODS: Participants were 60 multiunit housing residents in San Diego, California. All had indoor smoking bans during the study period, and 55 were nonsmokers. Wipe samples from different surfaces and vacuum floor dust samples were analyzed for nicotine, a marker of thirdhand smoke, and for Pb and Cd using liquid chromatography-triple quadrupole mass spectrometry and inductively coupled plasma-mass spectrometry, respectively. RESULTS: Examined in each sample type separately, Pb and Cd loadings were significantly correlated (r = 0.73, vacuum floor dust; 0.52, floor wipes; 0.72, window sill/trough wipes; all p < 0.0025). Pb and Cd loadings from different sample types were not correlated (all p > 0.30). Nicotine loading in dust was significantly correlated with Pb and Cd loading in dust (r = 0.49 for Pb; r = 0.39 for Cd, all p < 0.0025). Pb and Cd loadings on floor or window surfaces, showed no association with nicotine loading in dust, on floors, or on furniture (all p < 0.30). CONCLUSIONS: Tobacco smoke is a likely source of Pb and Cd that accumulates in settled house dust in multiunit housing, suggesting that Pb and Cd are constituents of thirdhand smoke that lingers long after smoking has ended.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Cádmio/análise , Chumbo/análise , Nicotiana/química , Fumaça/análise , Poluição por Fumaça de Tabaco/análise , Humanos
5.
Nicotine Tob Res ; 23(2): 364-372, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-32803265

RESUMO

INTRODUCTION: Toxic tobacco smoke residue, also known as thirdhand smoke (THS), can persist in indoor environments long after tobacco has been smoked. This study examined the effects of different cleaning methods on nicotine in dust and on surfaces. AIMS AND METHODS: Participants had strict indoor home smoking bans and were randomly assigned to: dry/damp cleaning followed by wet cleaning 1 month later (N = 10), wet cleaning followed by dry/damp cleaning (N = 10) 1 month later, and dry/damp and wet cleaning applied the same day (N = 28). Nicotine on surfaces and in dust served as markers of THS and were measured before, immediately after, and 3 months after the cleaning, using liquid chromatography with triple quadrupole mass spectrometry (LC-MS/MS). RESULTS: Over a 4-month period prior to cleaning, surface nicotine levels remained unchanged (GeoMean change: -11% to +8%; repeated measures r = .94; p < .001). Used separately, dry/damp and wet cleaning methods showed limited benefits. When applied in combination, however, we observed significantly reduced nicotine on surfaces and in dust. Compared with baseline, GeoMean surface nicotine was 43% lower immediately after (z = -3.73, p < .001) and 53% lower 3 months later (z = -3.96, p < .001). GeoMean dust nicotine loading declined by 60% immediately after (z = -3.55, p < .001) and then increased 3 months later to precleaning levels (z = -1.18, p = .237). CONCLUSIONS: Cleaning interventions reduced but did not permanently remove nicotine in dust and on surfaces. Cleaning efforts for THS need to address persistent pollutant reservoirs and replenishment of reservoirs from new tobacco smoke intrusion. THS contamination in low-income homes may contribute to health disparities, particularly in children. IMPLICATIONS: Administered sequentially or simultaneously, the tested cleaning protocols reduced nicotine on surfaces by ~50% immediately after and 3 months after the cleaning. Nicotine dust loading was reduced by ~60% immediately after cleaning, but it then rebounded to precleaning levels 3 months later. Cleaning protocols were unable to completely remove THS, and pollutants in dust were replenished from remaining pollutant reservoirs or new secondhand smoke intrusion. To achieve better outcomes, cleaning protocols should be systematically repeated to remove newly accumulated pollutants. New secondhand smoke intrusions need to be prevented, and remaining THS reservoirs should be identified, cleaned, or removed to prevent pollutants from these reservoirs to accumulate in dust and on surfaces.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Habitação , Nicotina/análise , Política Antifumo/tendências , Poluição por Fumaça de Tabaco/análise , Poluição por Fumaça de Tabaco/prevenção & controle , Idoso , Biomarcadores/análise , Feminino , Humanos , Masculino , Distribuição Aleatória , Fumaça/análise , Nicotiana
6.
Prev Med Rep ; 18: 101088, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32368436

RESUMO

Secondhand smoke (SHS) is a common indoor pollutant in multiunit housing (MUH). It is also the precursor of thirdhand smoke (THS), the toxic mixture of tobacco smoke residue that accumulates in indoor environments where tobacco has been used. This study examined the levels, distribution, and factors associated with THS pollution in low-income MUH. Interviews were conducted 2016-2018 in a cross-sectional study of N = 220 MUH homes in San Diego, California. Two surface wipe samples were collected per home and analyzed for nicotine, a THS marker, using liquid chromatography-triple quadrupole mass spectrometry. Nicotine was detected in all homes of nonsmokers with indoor smoking bans (Geo Mean = 1.67 µg/m2; 95% CI = [1.23;2.30]) and smokers regardless of an indoor ban (Geo Mean = 4.80 µg/m2; 95% CI = [1.89;12.19]). Approximately 10% of nonsmokers' homes with smoking bans showed nicotine levels higher than the average level in homes of smokers without smoking bans from previous studies (≥30 µg/m2). Housing for seniors, smoking bans on balconies, indoor tobacco use, difficult to reach surfaces, and self-reported African-American race/ethnicity were independently associated with higher THS levels. Individual cases demonstrated that high levels of surface nicotine may persist in nonsmoker homes for years after tobacco use even in the presence of indoor smoking bans. To achieve MUH free of tobacco smoke pollutants, attention must be given to identifying and remediating highly polluted units and to implementing smoking policies that prevent new accumulation of THS. As THS is a form of toxic tobacco product waste, responsibility for preventing and mitigating harmful impacts should include manufacturers, suppliers, and retailers.

7.
Zootaxa ; 4365(2): 149-172, 2017 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-29686215

RESUMO

We describe a new species of Plestiodon in the P. brevirostris group from the Balsas Basin in central Mexico. It is distinguished from the other species in the group by the following combination of traits: supraoculars four; interparietal enclosed posteriorly by parietals; primary temporal present; seventh supralabial usually contacting upper secondary temporal; longitudinal dorsal scale rows around midbody 23-26; Toe-IV lamellae 13-15; limbs not overlapping when adpressed against body; dorsolateral light line extending posteriorly to level of posterior end of anterior fourth of body or beyond; light median line absent in all growth stages; primary lateral dark lines separated medially by six dorsal scale rows and upper half of adjacent row on each side at level of midbody; lower secondary dark line faint at level of neck; and light coloration of supralabials extending ventrally to lip border. Analyses based on DNA sequences of three loci support the distinctiveness of the new species, as well as its sister species relationship with P. ochoterenae. The Environmental Vulnerability Score of the new species places it in the high vulnerability category.


Assuntos
Lagartos , Animais , Tamanho Corporal , México , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA