Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(39): E8184-E8193, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893988

RESUMO

The 3.3-Å cryo-EM structure of the 860-Å-diameter isometric mutant bacteriophage T4 capsid has been determined. WT T4 has a prolate capsid characterized by triangulation numbers (T numbers) Tend = 13 for end caps and Tmid = 20 for midsection. A mutation in the major capsid protein, gp23, produced T=13 icosahedral capsids. The capsid is stabilized by 660 copies of the outer capsid protein, Soc, which clamp adjacent gp23 hexamers. The occupancies of Soc molecules are proportional to the size of the angle between the planes of adjacent hexameric capsomers. The angle between adjacent hexameric capsomers is greatest around the fivefold vertices, where there is the largest deviation from a planar hexagonal array. Thus, the Soc molecules reinforce the structure where there is the greatest strain in the gp23 hexagonal lattice. Mutations that change the angles between adjacent capsomers affect the positions of the pentameric vertices, resulting in different triangulation numbers in bacteriophage T4. The analysis of the T4 mutant head assembly gives guidance to how other icosahedral viruses reproducibly assemble into capsids with a predetermined T number, although the influence of scaffolding proteins is also important.


Assuntos
Bacteriófago T4/ultraestrutura , Proteínas do Capsídeo/química , Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Bacteriófago T4/genética , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Modelos Moleculares , Mutação/genética , Estrutura Secundária de Proteína , Vírion/química
2.
Virology ; 508: 199-212, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28577856

RESUMO

The α4ß7 integrin present on host cells recognizes the V1V2 domain of the HIV-1 envelope protein. This interaction might be involved in virus transmission. Administration of α4ß7-specific antibodies inhibit acquisition of SIV in a macaque challenge model. But the molecular details of V1V2: α4ß7 interaction are unknown and its importance in HIV-1 infection remains controversial. Our biochemical and mutational analyses show that glycosylation is a key modulator of V1V2 conformation and binding to α4ß7. Partially glycosylated, but not fully glycosylated, envelope proteins are preferred substrates for α4ß7 binding. Surprisingly, monomers of the envelope protein bound strongly to α4ß7 whereas trimers bound poorly. Our results suggest that a conformationally flexible V1V2 domain allows binding of the HIV-1 virion to the α4ß7 integrin, which might impart selectivity for the poorly glycosylated HIV-1 envelope containing monomers to be more efficiently captured by α4ß7 integrin present on mucosal cells at the time of HIV-1 transmission.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Integrinas/metabolismo , Vírion/metabolismo , Sequência de Aminoácidos , Glicosilação , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , Humanos , Integrinas/genética , Ligação Proteica , Domínios Proteicos , Alinhamento de Sequência , Vírion/química , Vírion/genética
3.
Nat Commun ; 6: 7548, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26144253

RESUMO

The structure and assembly of bacteriophage T4 has been extensively studied. However, the detailed structure of the portal protein remained unknown. Here we report the structure of the bacteriophage T4 portal assembly, gene product 20 (gp20), determined by cryo-electron microscopy (cryo-EM) to 3.6 Å resolution. In addition, analysis of a 10 Å resolution cryo-EM map of an empty prolate T4 head shows how the dodecameric portal assembly interacts with the capsid protein gp23 at the special pentameric vertex. The gp20 structure also verifies that the portal assembly is required for initiating head assembly, for attachment of the packaging motor, and for participation in DNA packaging. Comparison of the Myoviridae T4 portal structure with the known portal structures of φ29, SPP1 and P22, representing Podo- and Siphoviridae, shows that the portal structure probably dates back to a time when self-replicating microorganisms were being established on Earth.


Assuntos
Bacteriófago T4/metabolismo , Proteínas do Capsídeo/química , Microscopia Crioeletrônica/métodos , Bacteriófago T4/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Modelos Moleculares , Conformação Proteica , Montagem de Vírus/fisiologia
4.
J Mol Biol ; 426(5): 1019-38, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24126213

RESUMO

Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the Escherichia coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and we fit the dodecamer into the cryo-electron microscopy density of the phage portal vertex. The core structure, like that from other phages, is cone shaped with the wider end containing the "wing" and "crown" domains inside the phage head. A long "stem" encloses a central channel, and a narrow "stalk" protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and the portal. The "tunnel" loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging.


Assuntos
Bacteriófago T4/química , Bacteriófago T4/metabolismo , Proteínas do Capsídeo/química , Empacotamento do DNA/fisiologia , DNA Viral/química , Montagem de Vírus/fisiologia , Bacteriófago T4/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , DNA Viral/genética , Escherichia coli/virologia , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Vírion/genética
5.
J Virol ; 86(8): 4046-57, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345478

RESUMO

DNA packaging by double-stranded DNA bacteriophages and herpesviruses is driven by a powerful molecular machine assembled at the portal vertex of the empty prohead. The phage T4 packaging machine consists of three components: dodecameric portal (gp20), pentameric large terminase motor (gp17), and 11- or 12-meric small terminase (gp16). These components dynamically interact and orchestrate a complex series of reactions to produce a DNA-filled head containing one viral genome per head. Here, we analyzed the interactions between the portal and motor proteins using a direct binding assay, mutagenesis, and structural analyses. Our results show that a portal binding site is located in the ATP hydrolysis-controlling subdomain II of gp17. Mutations at key residues of this site lead to temperature-sensitive or null phenotypes. A conserved helix-turn-helix (HLH) that is part of this site interacts with the portal. A recombinant HLH peptide competes with gp17 for portal binding and blocks DNA translocation. The helices apparently provide specificity to capture the cognate prohead, whereas the loop residues communicate the portal interaction to the ATPase center. These observations lead to a hypothesis in which a unique HLH-portal interaction in the symmetrically mismatched complex acts as a lever to position the arginine finger and trigger ATP hydrolysis. Transiently connecting the critical parts of the motor; subdomain I (ATP binding), subdomain II (controlling ATP hydrolysis), and C-domain (DNA movement), the portal-motor interactions might ensure tight coupling between ATP hydrolysis and DNA translocation.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Proteínas do Capsídeo/metabolismo , Empacotamento do DNA , DNA Viral/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacteriófago T4/química , Sítios de Ligação , Transporte Biológico , Endopeptidases/metabolismo , Ordem dos Genes , Sequências Hélice-Alça-Hélice , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Proteínas do Core Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA