Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nat Commun ; 14(1): 6199, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794023

RESUMO

Liquid-liquid phase separation (LLPS) has emerged as a crucial biological phenomenon underlying the sequestration of macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides but with distinct phase regimes irrespective of their sequence and structure. To examine this, we studied many (a total of 23) proteins/polypeptides with different structures and sequences for LLPS study in the presence and absence of molecular crowder, polyethylene glycol (PEG-8000). We showed that all proteins and even highly charged polypeptides (under study) can undergo liquid condensate formation, however with different phase regimes and intermolecular interactions. We further demonstrated that electrostatic, hydrophobic, and H-bonding or a combination of such intermolecular interactions plays a crucial role in individual protein/peptide LLPS.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Peptídeos
2.
Nat Commun ; 14(1): 4108, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433821

RESUMO

Simulating chromatin is crucial for predicting genome organization and dynamics. Although coarse-grained bead-spring polymer models are commonly used to describe chromatin, the relevant bead dimensions, elastic properties, and the nature of inter-bead potentials are unknown. Using nucleosome-resolution contact probability (Micro-C) data, we systematically coarse-grain chromatin and predict quantities essential for polymer representation of chromatin. We compute size distributions of chromatin beads for different coarse-graining scales, quantify fluctuations and distributions of bond lengths between neighboring regions, and derive effective spring constant values. Unlike the prevalent notion, our findings argue that coarse-grained chromatin beads must be considered as soft particles that can overlap, and we derive an effective inter-bead soft potential and quantify an overlap parameter. We also compute angle distributions giving insights into intrinsic folding and local bendability of chromatin. While the nucleosome-linker DNA bond angle naturally emerges from our work, we show two populations of local structural states. The bead sizes, bond lengths, and bond angles show different mean behavior at Topologically Associating Domain (TAD) boundaries and TAD interiors. We integrate our findings into a coarse-grained polymer model and provide quantitative estimates of all model parameters, which can serve as a foundational basis for all future coarse-grained chromatin simulations.


Assuntos
Cromatina , Animais , Camundongos , Células-Tronco Embrionárias Murinas , Cromatina/química , Nucleossomos/química , alfa-Globinas/química , Modelos Moleculares , Estrutura Terciária de Proteína , Genoma
4.
Protein Sci ; 32(5): e4632, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36974517

RESUMO

Small Ubiquitin-like Modifier 1 (SUMO1) is an essential protein for many cellular functions, including regulation, signaling, etc., achieved by a process known as SUMOylation, which involves covalent attachment of SUMO1 to target proteins. SUMO1 also regulates the function of several proteins via non-covalent interactions involving the hydrophobic patch in the target protein identified as SUMO Binding or Interacting Motif (SBM/SIM). Here, we demonstrate a crucial functional potential of SUMO1 mediated by its non-covalent interactions with α-Synuclein, a protein responsible for many neurodegenerative diseases called α-Synucleinopathies. SUMO1 hinders the fibrillation of α-Synuclein, an intrinsically disordered protein (IDP) that undergoes a transition to ß-structures during the fibrillation process. Using a plethora of biophysical techniques, we show that SUMO1 transiently binds to the N-terminus region of α-Synuclein non-covalently and causes structural compaction, which hinders the self-association process and thereby delays the fibrillation process. On the one hand, this study demonstrates an essential functional role of SUMO1 protein concerning neurodegeneration; it also illustrates the commonly stated mechanism that IDPs carry out multiple functions by structural adaptation to suit specific target proteins, on the other. Residue-level details about the SUMO1-α-Synuclein interaction obtained here also serve as a reliable approach for investigating the detailed mechanisms of IDP functions.


Assuntos
alfa-Sinucleína , alfa-Sinucleína/metabolismo , Ligação Proteica
5.
Life Sci Alliance ; 6(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849253

RESUMO

Chromatin attains its three-dimensional (3D) conformation by establishing contacts between different noncontiguous regions. Sterile Alpha Motif (SAM)-mediated polymerization of the polyhomeotic (PH) protein regulates subnuclear clustering of Polycomb Repressive Complex 1 (PRC1) and chromatin topology. The mutations that perturb the ability of the PH to polymerize, disrupt long-range chromatin contacts, alter Hox gene expression, and lead to developmental defects. To understand the underlying mechanism, we combined the experiments and theory to investigate the effect of this SAM domain mutation on nucleosome occupancy and accessibility on a genome wide scale. Our data show that disruption of PH polymerization because of SAM domain mutation decreases nucleosome occupancy and alters accessibility. Polymer simulations investigating the interplay between distant chromatin contacts and nucleosome occupancy, both of which are regulated by PH polymerization, suggest that nucleosome density increases when contacts between different regions of chromatin are established. Taken together, it appears that SAM domain-mediated PH polymerization biomechanically regulates the organization of chromatin at multiple scales from nucleosomes to chromosomes and we suggest that higher order organization can have a top-down causation effect on nucleosome occupancy.


Assuntos
Proteínas de Drosophila , Nucleossomos , Nucleossomos/genética , Polimerização , Cromatina/genética , Mutação/genética , Núcleo Celular
6.
Phys Rev E ; 106(2-1): 024408, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36110002

RESUMO

Nucleosomes are the fundamental building blocks of chromatin that not only help in the folding of chromatin, but also in carrying epigenetic information. It is known that nucleosome sliding is responsible for dynamically organizing chromatin structure and the resulting gene regulation. Since sliding can move two neighboring nucleosomes physically close or away, can it play a role in the spreading of histone modifications? We investigate this by simulating a stochastic model that couples nucleosome dynamics with the kinetics of histone modifications. We show that the sliding of nucleosomes can affect the modification pattern as well as the time it takes to modify a given region of chromatin. Exploring different nucleosome densities and modification kinetic parameters, we show that nucleosome sliding can be important for creating histone modification domains. Our model predicts that nucleosome density coupled with sliding dynamics can create an asymmetric histone modification profile around regulatory regions. We also compute the probability distribution of modified nucleosomes and relaxation kinetics of modifications. Our predictions are comparable with known experimental results.


Assuntos
Código das Histonas , Nucleossomos , Cromatina , Montagem e Desmontagem da Cromatina , Histonas/metabolismo
7.
J Mol Biol ; 434(19): 167761, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35907572

RESUMO

α-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. The mechanism of how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure-function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates. These polymorphs display the structural differences as demonstrated by solid-state NMR and mass spectrometry studies and also possess different cellular activities such as seeding, internalization, and cell-to-cell transfer of aggregates. HMFs, with a compact core structure, exhibit low seeding potency but readily internalize and transfer from one cell to another. The less structured PMFs lack transcellular transfer ability but induce abundant α-Syn pathology and trigger the formation of aggresomes in cells. Overall, the study highlights that the conformational heterogeneity in the aggregation pathway may lead to fibril polymorphs with distinct prion-like behavior.


Assuntos
Príons , Agregação Patológica de Proteínas , alfa-Sinucleína , Amiloide/química , Humanos , Corpos de Inclusão/química , Espectroscopia de Ressonância Magnética , Príons/metabolismo , alfa-Sinucleína/química
8.
J Phys Chem Lett ; 13(28): 6427-6438, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35816132

RESUMO

The size of amyloid seeds is known to modulate their autocatalytic amplification and cellular toxicity. However, the seed size-dependent secondary nucleation mechanism, toxicity, and disease-associated biological processes mediated by α-synuclein (α-Syn) fibrils are largely unknown. Using the cellular model and in vitro reconstitution, we showed that the size of α-Syn fibril seeds dictates not only their cellular internalization and associated cell death but also the distinct mechanisms of fibril amplification pathways involved in the pathological conformational change of α-Syn. Specifically, small fibril seeds showed elongation possibly through monomer addition at the fibril termini, whereas longer fibrils template the fibril amplification by surface-mediated nucleation as demonstrated by super-resolution microscopy. The distinct mechanism of fibril amplification and cellular uptake along with toxicity suggest that breakage of fibrils into seeds of different sizes determines the underlying pathological outcome of synucleinopathies.


Assuntos
Amiloide , alfa-Sinucleína , Amiloide/metabolismo , alfa-Sinucleína/metabolismo
9.
Biophys J ; 121(14): 2794-2812, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35672951

RESUMO

Chromatin is known to be organized into multiple domains of varying sizes and compaction. While these domains are often imagined as static structures, they are highly dynamic and show cell-to-cell variability. Since processes such as gene regulation and DNA replication occur in the context of these domains, it is important to understand their organization, fluctuation, and dynamics. To simulate chromatin domains, one requires knowledge of interaction strengths among chromatin segments. Here, we derive interaction-strength parameters from experimentally known contact maps and use them to predict chromatin organization and dynamics. Taking two domains on the human chromosome as examples, we investigate its three-dimensional organization, size/shape fluctuations, and dynamics of different segments within a domain, accounting for hydrodynamic effects. Considering different cell types, we quantify changes in interaction strengths and chromatin shape fluctuations in different epigenetic states. Perturbing the interaction strengths systematically, we further investigate how epigenetic-like changes can alter the spatio-temporal nature of the domains. Our results show that heterogeneous weak interactions are crucial in determining the organization of the domains. Computing effective stiffness and relaxation times, we investigate how perturbations in interactions affect the solid- and liquid-like nature of chromatin domains. Quantifying dynamics of chromatin segments within a domain, we show how the competition between polymer entropy and interaction energy influence the timescales of loop formation and maintenance of stable loops.


Assuntos
Cromatina , Polímeros , Cromossomos , Entropia , Epigenômica , Humanos
10.
PLoS Comput Biol ; 18(5): e1010067, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533203

RESUMO

Phase separation of biomolecules could be mediated by both specific and non-specific interactions. How the interplay between non-specific and specific interactions along with polymer entropy influences phase separation is an open question. We address this question by simulating self-associating molecules as polymer chains with a short core stretch that forms the specifically interacting functional interface and longer non-core regions that participate in non-specific/promiscuous interactions. Our results show that the interplay of specific (strength, ϵsp) and non-specific interactions (strength, ϵns) could result in phase separation of polymers and its transition to solid-like aggregates (mature state). In the absence of ϵns, the polymer chains do not dwell long enough in the vicinity of each other to undergo phase separation and transition into a mature state. On the other hand, in the limit of strong ϵns, the assemblies cannot transition into the mature state and form a non-specific assembly, suggesting an optimal range of interactions favoring mature multimers. In the scenario where only a fraction (Nfrac) of the non-core regions participate in attractive interactions, we find that slight modifications to either ϵns or Nfrac can result in dramatically altered self-assembled states. Using a combination of heterogeneous and homogeneous mix of polymers, we establish how this interplay between interaction energies dictates the propensity of biomolecules to find the correct binding partner at dilute concentrations in crowded environments.


Assuntos
Polímeros , Entropia , Polímeros/química
11.
PLoS Comput Biol ; 18(2): e1009861, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176029

RESUMO

During cell devision, maintaining the epigenetic information encoded in histone modification patterns is crucial for survival and identity of cells. The faithful inheritance of the histone marks from the parental to the daughter strands is a puzzle, given that each strand gets only half of the parental nucleosomes. Mapping DNA replication and reconstruction of modifications to equivalent problems in communication of information, we ask how well enzymes can recover the parental modifications, if they were ideal computing machines. Studying a parameter regime where realistic enzymes can function, our analysis predicts that enzymes may implement a critical threshold filling algorithm which fills unmodified regions of length at most k. This algorithm, motivated from communication theory, is derived from the maximum à posteriori probability (MAP) decoding which identifies the most probable modification sequence based on available observations. Simulations using our method produce modification patterns similar to what has been observed in recent experiments. We also show that our results can be naturally extended to explain inheritance of spatially distinct antagonistic modifications.


Assuntos
Epigênese Genética , Código das Histonas , Cromatina , Replicação do DNA/genética , Epigênese Genética/genética , Código das Histonas/genética , Histonas/genética , Histonas/metabolismo , Padrões de Herança , Nucleossomos/genética
12.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615716

RESUMO

Understanding kinetic control of biological processes is as important as identifying components that constitute pathways. Insulin signaling is central for almost all metazoans, and its perturbations are associated with various developmental disorders, metabolic diseases, and aging. While temporal phosphorylation changes and kinetic constants have provided some insights, constant or variable parameters that establish and maintain signal topology are poorly understood. Here, we report kinetic parameters that encode insulin concentration and nutrient-dependent flow of information using iterative experimental and mathematical simulation-based approaches. Our results illustrate how dynamics of distinct phosphorylation events collectively contribute to selective kinetic gating of signals and maximum connectivity of the signaling cascade under normo-insulinemic but not hyper-insulinemic states. In addition to identifying parameters that provide predictive value for maintaining the balance between metabolic and growth-factor arms, we posit a kinetic basis for the emergence of insulin resistance. Given that pulsatile insulin secretion during a fasted state precedes a fed response, our findings reveal rewiring of insulin signaling akin to memory and anticipation, which was hitherto unknown. Striking disparate temporal behavior of key phosphorylation events that destroy the topology under hyper-insulinemic states underscores the importance of unraveling regulatory components that act as bandwidth filters. In conclusion, besides providing fundamental insights, our study will help in identifying therapeutic strategies that conserve coupling between metabolic and growth-factor arms, which is lost in diseases and conditions of hyper-insulinemia.


Assuntos
Glicemia/análise , Jejum/sangue , Hepatócitos/metabolismo , Hiperinsulinismo/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Animais , Células Cultivadas , Simulação por Computador , Hiperinsulinismo/sangue , Insulina/sangue , Camundongos , Modelos Teóricos , Fosforilação , Transdução de Sinais/fisiologia
13.
Genome Res ; 31(4): 607-621, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33514624

RESUMO

The establishment of centromeric chromatin and its propagation by the centromere-specific histone CENPA is mediated by epigenetic mechanisms in most eukaryotes. DNA replication origins, origin binding proteins, and replication timing of centromere DNA are important determinants of centromere function. The epigenetically regulated regional centromeres in the budding yeast Candida albicans have unique DNA sequences that replicate earliest in every chromosome and are clustered throughout the cell cycle. In this study, the genome-wide occupancy of the replication initiation protein Orc4 reveals its abundance at all centromeres in C. albicans Orc4 is associated with four different DNA sequence motifs, one of which coincides with tRNA genes (tDNA) that replicate early and cluster together in space. Hi-C combined with genome-wide replication timing analyses identify that early replicating Orc4-bound regions interact with themselves stronger than with late replicating Orc4-bound regions. We simulate a polymer model of chromosomes of C. albicans and propose that the early replicating and highly enriched Orc4-bound sites preferentially localize around the clustered kinetochores. We also observe that Orc4 is constitutively localized to centromeres, and both Orc4 and the helicase Mcm2 are essential for cell viability and CENPA stability in C. albicans Finally, we show that new molecules of CENPA are recruited to centromeres during late anaphase/telophase, which coincides with the stage at which the CENPA-specific chaperone Scm3 localizes to the kinetochore. We propose that the spatiotemporal localization of Orc4 within the nucleus, in collaboration with Mcm2 and Scm3, maintains centromeric chromatin stability and CENPA recruitment in C. albicans.


Assuntos
Candida albicans , Centrômero , Cromatina , Complexo de Reconhecimento de Origem/metabolismo , Candida albicans/genética , Centrômero/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Cinetocoros , Origem de Replicação/genética
14.
Biophys J ; 119(11): 2316-2325, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181117

RESUMO

An important question in the context of the three-dimensional organization of chromosomes is the mechanism of formation of large loops between distant basepairs. Recent experiments suggest that the formation of loops might be mediated by loop extrusion factor proteins such as cohesin. Experiments on cohesin have shown that cohesins walk diffusively on the DNA and that nucleosomes act as obstacles to the diffusion, lowering the permeability and hence reducing the effective diffusion constant. An estimation of the times required to form the loops of typical sizes seen in Hi-C experiments using these low-effective-diffusion constants leads to times that are unphysically large. The puzzle then is the following: how does a cohesin molecule diffusing on the DNA backbone achieve speeds necessary to form the large loops seen in experiments? We propose a simple answer to this puzzle and show that although at low densities, nucleosomes act as barriers to cohesin diffusion, beyond a certain concentration they can reduce loop formation times because of a subtle interplay between the nucleosome size and the mean linker length. This effect is further enhanced on considering stochastic binding kinetics of nucleosomes on the DNA backbone and leads to predictions of lower loop formation times than might be expected from a naive obstacle picture of nucleosomes.


Assuntos
Cromatina , Nucleossomos , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona , Coesinas
15.
ACS Chem Neurosci ; 11(21): 3615-3622, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33050701

RESUMO

Amyloid fibrils are typically associated with neurodegenerative diseases. Recent studies have suggested that, similar to prions, many amyloid proteins are infectious in nature and may cause spreading and dissemination of diseases. Typical amyloid infection propagates by recruiting functional proteins into amyloidogenic form and multiplying by breaking the existing fibril. In this study, we model the kinetics of fibril growth through breakage and the subsequent elongation process, similar to the prion infection process. Using kinetic Monte Carlo simulations as well as mathematical counting methods, we show how the measurable quantities like the 50% aggregation time (T50) and the maximum growth rate (Vmax) scale with various parameters in the problem. This study has a direct application where it can be used to understand experiments that amplify the minute amount of amyloid seeds present in biological fluid for early detection of human disease. Using the knowledge from our simulations, we can predict the initial seed concentration, known as the filament kinetics.


Assuntos
Amiloidose , Príons , Amiloide , Proteínas Amiloidogênicas , Humanos , Cinética
16.
Curr Opin Struct Biol ; 64: 111-118, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32731156

RESUMO

In our cells, DNA is folded and packed with the help of many proteins into chromatin whose basic unit is a nucleosome-DNA wrapped around octamer of histone proteins. The chain of nucleosomes is further folded and arranged into many layers and has a dynamic organization. How does the complex chromatin organization emerge from interactions among DNA, histones, and non-histone proteins have been a question of great interest. Here we review recent literature that investigated how nucleosome positioning and nucleosome-mediated interactions drive chromatin organization. Unlike our earlier understanding, chromatin is organized into 3D domains of various sizes having irregularly organized nucleosomes. These domains emerge due to heterogeneous nucleosome positioning and diverse inter-nucleosome interactions that vary in space and time.


Assuntos
Montagem e Desmontagem da Cromatina , Nucleossomos , Cromatina , DNA/genética , Histonas/metabolismo
17.
Nat Chem ; 12(8): 705-716, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514159

RESUMO

α-Synuclein (α-Syn) aggregation and amyloid formation is directly linked with Parkinson's disease pathogenesis. However, the early events involved in this process remain unclear. Here, using the in vitro reconstitution and cellular model, we show that liquid-liquid phase separation of α-Syn precedes its aggregation. In particular, in vitro generated α-Syn liquid-like droplets eventually undergo a liquid-to-solid transition and form an amyloid hydrogel that contains oligomers and fibrillar species. Factors known to aggravate α-Syn aggregation, such as low pH, phosphomimetic substitution and familial Parkinson's disease mutations, also promote α-Syn liquid-liquid phase separation and its subsequent maturation. We further demonstrate α-Syn liquid-droplet formation in cells. These cellular α-Syn droplets eventually transform into perinuclear aggresomes, the process regulated by microtubules. This work provides detailed insights into the phase-separation behaviour of natively unstructured α-Syn and its conversion to a disease-associated aggregated state, which is highly relevant in Parkinson's disease pathogenesis.


Assuntos
Agregados Proteicos/fisiologia , alfa-Sinucleína/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Mutagênese Sítio-Dirigida , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Transição de Fase , Polietilenoglicóis/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
18.
Biophys J ; 118(9): 2193-2208, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389215

RESUMO

The three-dimensional (3D) organization of chromatin, on the length scale of a few genes, is crucial in determining the functional state-accessibility and amount of gene expression-of the chromatin. Recent advances in chromosome conformation capture experiments provide partial information on the chromatin organization in a cell population, namely the contact count between any segment pairs, but not on the interaction strength that leads to these contact counts. However, given the contact matrix, determining the complete 3D organization of the whole chromatin polymer is an inverse problem. In this work, a novel inverse Brownian dynamics method based on a coarse-grained bead-spring chain model has been proposed to compute the optimal interaction strengths between different segments of chromatin such that the experimentally measured contact count probability constraints are satisfied. Applying this method to the α-globin gene locus in two different cell types, we predict the 3D organizations corresponding to active and repressed states of chromatin at the locus. We show that the average distance between any two segments of the region has a broad distribution and cannot be computed as a simple inverse relation based on the contact probability alone. The results presented for multiple normalization methods suggest that all measurable quantities may crucially depend on the nature of normalization. We argue that by experimentally measuring predicted quantities, one may infer the appropriate form of normalization.


Assuntos
Cromatina , Cromossomos , Conformação Molecular , Probabilidade
19.
Soft Matter ; 16(12): 3125-3136, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32159199

RESUMO

Microtubules (MTs) are bio-polymers, composed of tubulin proteins, involved in several functions such as cell division, transport of cargoes within cells, maintaining cellular structures etc. Their kinetics are often affected by chemical modifications on the filament known as Post Translational Modifications (PTMs). Acetylation is a PTM which occurs on the luminal surface of the MT lattice and has been observed to reduce the lateral interaction between tubulins on adjacent protofilaments. Depending on the properties of the acetylase enzyme αTAT1 and the structural features of MTs, the patterns of acetylation formed on MTs are observed to be quite diverse. In this study, we present a multi-protofilament model with spatially heterogeneous patterns of acetylation, and investigate how the local kinetic differences arising from heterogeneity affect the global kinetics of MT filaments. From the computational study we conclude that a filament with spatially uniform acetylation is least stable against disassembly, while ones with more clustered acetylation patterns may provide better resistance against disassembly. The increase in disassembly times for clustered pattern as compared to uniform pattern can be up to fifty percent for identical amounts of acetylation. Given that acetylated MTs affect several cellular functions as well as diseases such as cancer, our study indicates that spatial patterns of acetylation need to be focused on, apart from the overall amount of acetylation.


Assuntos
Microtúbulos/metabolismo , Acetilação , Simulação por Computador , Humanos , Cinética , Modelos Biológicos , Método de Monte Carlo , Processamento de Proteína Pós-Traducional
20.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-31965992

RESUMO

We present a physics-based polymer model that can investigate 3D organization of chromatin accounting for DNA elasticity, DNA-bending due to nucleosomes, and 1D organization of nucleosomes along DNA. We find that the packing density of chromatin oscillates between densities corresponding to highly folded and extended configurations as we change the nucleosome organization (length of linker DNA). We compute the looping probability of chromatin and show that the presence of nucleosomes increases the looping probability of the chain compared to that of a bare DNA. We also show that looping probability has a large variability depending on the nature of nucleosome organization and density of linker histones.


Assuntos
Cromatina/genética , DNA/genética , Histonas/genética , Nucleossomos/genética , Animais , Cromatina/ultraestrutura , DNA/ultraestrutura , Histonas/ultraestrutura , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA