Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18452, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116228

RESUMO

With the recent advances in ultrahigh intensity lasers, exotic astrophysical phenomena can be investigated in laboratory environments. Collisionless shock in a plasma, prevalent in astrophysical events, is produced when a strong electric or electromagnetic force induces a shock structure in a time scale shorter than the collision time of charged particles. A near-critical-density (NCD) plasma, generated with an intense femtosecond laser, can be utilized to excite a collisionless shock due to its efficient and rapid energy absorption. We present electrostatic shock acceleration (ESA) in experiments performed with a high-density helium gas jet, containing a small fraction of hydrogen, irradiated with a 30 fs, petawatt laser. The onset of ESA exhibited a strong dependence on plasma density, consistent with the result of particle-in-cell simulations on relativistic plasma dynamics. The mass-dependent ESA in the NCD plasma, confirmed by the preferential reflection of only protons with two times the shock velocity, opens a new possibility of selective acceleration of ions by electrostatic shock.

2.
Australas Phys Eng Sci Med ; 37(4): 635-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25154880

RESUMO

Conventional laser accelerated proton beam has broad energy spectra. It is not suitable for clinical use directly, so it is necessary for employing energy selection system. However, in the conventional laser accelerated proton system, the intensity of the proton beams in the low energy regime is higher than that in the high energy regime. Thus, to generate spread-out-Bragg peak (SOBP), stronger weighting value to the higher energy proton beams is needed and weaker weighting value to the lower energy proton beams is needed, which results in the wide range of weighting values. The purpose of this research is to investigate a method for efficient generating of the SOBP with varying magnetic field in the energy selection system using a carbon-proton mixture target. Energy spectrum of the laser accelerated proton beams was acquired using Particle-In-Cell simulations. The Geant4 Monte Carlo simulation toolkit was implemented for energy selection, particle transportation, and dosimetric property measurement. The energy selection collimator hole size of the energy selection system was changed from 1 to 5 mm in order to investigate the effect of hole size on the dosimetric properties for Bragg peak and SOBP. To generate SOBP, magnetic field in the energy selection system was changed during beam irradiation with each beam weighting factor. In this study, our results suggest that carbon-proton mixture target based laser accelerated proton beams can generate quasi-monoenergetic energy distribution and result in the efficient generation of SOBP. A further research is needed to optimize SOBP according to each range and modulated width using an optimized weighting algorithm.


Assuntos
Carbono/efeitos da radiação , Lasers , Modelos Estatísticos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/métodos , Algoritmos , Simulação por Computador , Humanos , Método de Monte Carlo , Terapia com Prótons , Dosagem Radioterapêutica
3.
Phys Rev Lett ; 111(16): 165002, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182273

RESUMO

Laser-wakefield acceleration offers the promise of a compact electron accelerator for generating a multi-GeV electron beam using the huge field gradient induced by an intense laser pulse, compared to conventional rf accelerators. However, the energy and quality of the electron beam from the laser-wakefield accelerator have been limited by the power of the driving laser pulses and interaction properties in the target medium. Recent progress in laser technology has resulted in the realization of a petawatt (PW) femtosecond laser, which offers new capabilities for research on laser-wakefield acceleration. Here, we present a significant increase in laser-driven electron energy to the multi-GeV level by utilizing a 30-fs, 1-PW laser system. In particular, a dual-stage laser-wakefield acceleration scheme (injector and accelerator scheme) was applied to boost electron energies to over 3 GeV with a single PW laser pulse. Three-dimensional particle-in-cell simulations corroborate the multi-GeV electron generation from the dual-stage laser-wakefield accelerator driven by PW laser pulses.

4.
Phys Rev Lett ; 111(16): 165003, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182274

RESUMO

Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton and/or ion acceleration in the intensity range of 5×10(19) to 3.3×10(20) W/cm2 by irradiating linearly polarized, 30-fs laser pulses on 10-to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness is examined, and a maximum proton energy of 45 MeV is obtained when a 10-nm-thick target is irradiated by a laser intensity of 3.3×10(20) W/cm2. The proton acceleration is explained by a hybrid acceleration mechanism including target normal sheath acceleration, radiation pressure acceleration, and Coulomb explosion assisted-free expansion. The transition of proton energy scaling from I(1/2) to I is observed as a consequence of the hybrid acceleration mechanism. The experimental results are supported by two- and three-dimensional particle-in-cell simulations.

5.
Nat Commun ; 3: 1231, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23187631

RESUMO

Coherent short-wavelength radiation from laser-plasma interactions is of increasing interest in disciplines including ultrafast biomolecular imaging and attosecond physics. Using solid targets instead of atomic gases could enable the generation of coherent extreme ultraviolet radiation with higher energy and more energetic photons. Here we present the generation of extreme ultraviolet radiation through coherent high-harmonic generation from self-induced oscillatory flying mirrors--a new-generation mechanism established in a long underdense plasma on a solid target. Using a 30-fs, 100-TW Ti:sapphire laser, we obtain wavelengths as short as 4.9 nm for an optimized level of amplified spontaneous emission. Particle-in-cell simulations show that oscillatory flying electron nanosheets form in a long underdense plasma, and suggest that the high-harmonic generation is caused by reflection of the laser pulse from electron nanosheets. We expect this extreme ultraviolet radiation to be valuable in realizing a compact X-ray instrument for research in biomolecular imaging and attosecond physics.


Assuntos
Raios Ultravioleta , Interferometria , Lasers , Imagem Molecular/métodos , Nanoestruturas , Fótons
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 016404, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19658820

RESUMO

For controllable generation of an isolated attosecond relativistic electron bunch [relativistic electron mirror (REM)] with nearly solid-state density, we proposed [V. V. Kulagin, Phys. Rev. Lett. 99, 124801 (2007)] to use a solid nanofilm illuminated normally by an ultraintense femtosecond laser pulse having a sharp rising edge (nonadiabatic laser pulse). In this paper, the REM characteristics are investigated in a regular way for a wide range of parameters. With the help of two-dimensional (2D) particle-in-cell (PIC) simulations, it is shown that, in spite of Coulomb forces, all of the electrons in the laser spot can be synchronously accelerated to ultrarelativistic velocities by the first half-cycle of the field, which has large enough amplitude. For the process of the REM generation, we also verify a self-consistent one-dimensional theory, which we developed earlier (cited above) and which takes into account Coulomb forces, radiation of the electrons, and laser amplitude depletion. This theory shows a good agreement with the results of the 2D PIC simulations. Finally, the scaling of the REM dynamical parameters with the field amplitude and the nanofilm thickness is analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA