Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pathogens ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678433

RESUMO

Chagas disease is a zoonotic infectious disease caused by the protozoan parasite Trypanosoma cruzi. It is distributed worldwide, affecting around 7 million people; there is no effective treatment, and it constitutes a leading cause of disability and premature death in the Americas. Only two drugs are currently approved for the treatment, Benznidazole and Nifurtimox, and both have to be activated by reducing the nitro-group. The T. cruzi aldo-keto reductase (TcAKR) has been related to the metabolism of benznidazole. TcAKR has been extensively studied, being most efforts focused on characterizing its implication in trypanocidal drug metabolism; however, little is known regarding its biological role. Here, we found that TcAKR is confined, throughout the entire life cycle, into the parasite mitochondria providing new insights into its biological function. In particular, in epimastigotes, TcAKR is associated with the kinetoplast, which suggests additional roles of the protein. The upregulation of TcAKR, which does not affect TcOYE expression, was correlated with an increase in PGF2α, suggesting that this enzyme is related to PGF2α synthesis in T. cruzi. Structural analysis showed that TcAKR contains a catalytic tetrad conserved in the AKR superfamily. Finally, we found that TcAKR is also involved in Nfx metabolization.

2.
Cell Biol Int ; 46(8): 1288-1298, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35673988

RESUMO

Acanthamoeba castellanii is the etiological agent of amoebic keratitis and is present in the environment in trophozoite or cyst forms. Both forms can infect the vertebrate host and colonize different tissues. The high resistance of cysts to standard drugs used in clinics contributes to the lack of effective treatments. Therefore, in this context, studies have emerged to understand cyst physiology and metabolism. Phosphate transporters are proteins responsible for the uptake of extracellular inorganic phosphate and transport to the cytosol. This work aims to verify the relationship between Pi transport and energetic metabolism in cysts of A. castellanii. The phosphate uptake ratio was higher in cysts compared with trophozoites. Recently, three sequences related to phosphate transporters have been identified in the A. castellanii genome (AcPHS1, AcPHS2, and AcPHS3); the messenger RNA expression levels of which differ depending on the amoeba life form. Pi uptake in cysts displayed peak activity at alkaline pH, whereas Pi transport in trophozoites was not affected in the same pH ranges. Cysts harbor a low-affinity Pi transport system (K0,5 and Vmax values of 1.76 ± 0.26 mM and 104.6 ± 6.3 nmol Pi × h-1 × 106 cells) compared to the trophozoite phosphate transport system. Pi transport seems important for anaerobic adenosine triphosphate synthesis in cysts, which initially occurs through the glycolytic pathway and subsequently through the pyruvate ferredoxin oxidoreductase pathway. Altogether, these results suggest that contrary to that previously postulated, cysts are active metabolic forms, and, as noted in trophozoites, phosphate uptake is important for energetic metabolism.


Assuntos
Acanthamoeba castellanii , Acanthamoeba castellanii/genética , Trifosfato de Adenosina/farmacologia , Anaerobiose , Animais , Proteínas de Transporte de Fosfato , Fosfatos , Trofozoítos/fisiologia
3.
Front Cell Infect Microbiol ; 11: 769922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858878

RESUMO

Belonging to the GDA1/CD39 protein superfamily, nucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP) and inorganic phosphate (Pi). Several NTPDase isoforms have been described in different cells, from pathogenic organisms to animals and plants. Biochemical characterization of nucleotidases/NTPDases has revealed the existence of isoforms with different specificities regarding divalent cations (such as calcium and magnesium) and substrates. In mammals, NTPDases have been implicated in the regulation of thrombosis and inflammation. In parasites, such as Trichomonas vaginalis, Trypanosoma spp., Leishmania spp., Schistosoma spp. and Toxoplasma gondii, NTPDases were found on the surface of the cell, and important processes like growth, infectivity, and virulence seem to depend on their activity. For instance, experimental evidence has indicated that parasite NTPDases can regulate the levels of ATP and Adenosine (Ado) of the host cell, leading to the modulation of the host immune response. In this work, we provide a comprehensive review showing the involvement of the nucleotidases/NTPDases in parasites infectivity and virulence, and how inhibition of NTPDases contributes to parasite clearance and the development of new antiparasitic drugs.


Assuntos
Leishmania , Parasitos , Trichomonas vaginalis , Trypanosoma , Trifosfato de Adenosina , Animais , Interações Hospedeiro-Parasita
4.
Biochem J ; 478(21): 3891-3903, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661234

RESUMO

The pathogenic protist Trypanosoma cruzi uses kissing bugs as invertebrate hosts that vectorize the infection among mammals. This parasite oxidizes proline to glutamate through two enzymatic steps and one nonenzymatic step. In insect vectors, T. cruzi differentiates from a noninfective replicating form to nonproliferative infective forms. Proline sustains this differentiation, but to date, a link between proline metabolism and differentiation has not been established. In T. cruzi, the enzymatic steps of the proline-glutamate oxidation pathway are catalyzed exclusively by the mitochondrial enzymes proline dehydrogenase [TcPRODH, EC: 1.5.5.2] and Δ1-pyrroline-5-carboxylate dehydrogenase [TcP5CDH, EC: 1.2.1.88]. Both enzymatic steps produce reducing equivalents that are able to directly feed the mitochondrial electron transport chain (ETC) and thus produce ATP. In this study, we demonstrate the contribution of each enzyme of the proline-glutamate pathway to ATP production. In addition, we show that parasites overexpressing these enzymes produce increased levels of H2O2, but only those overexpressing TcP5CDH produce increased levels of superoxide anion. We show that parasites overexpressing TcPRODH, but not parasites overexpressing TcP5CDH, exhibit a higher rate of differentiation into metacyclic trypomastigotes in vitro. Finally, insect hosts infected with parasites overexpressing TcPRODH showed a diminished parasitic load but a higher percent of metacyclic trypomastigotes, when compared with controls. Our data show that parasites overexpressing both, PRODH and P5CDH had increased mitochondrial functions that orchestrated different oxygen signaling, resulting in different outcomes in relation to the efficiency of parasitic differentiation in the invertebrate host.


Assuntos
Doença de Chagas/parasitologia , Mitocôndrias/metabolismo , Prolina Oxidase/metabolismo , Rhodnius/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Diferenciação Celular
5.
Exp Parasitol ; 229: 108154, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34481863

RESUMO

The compound 3-bromopyruvate (3-BrPA) is well-known and studies from several researchers have demonstrated its involvement in tumorigenesis. It is an analogue of pyruvic acid that inhibits ATP synthesis by inhibiting enzymes from the glycolytic pathway and oxidative phosphorylation. In this work, we investigated the effect of 3-BrPA on energy metabolism of L. amazonensis. In order to verify the effect of 3-BrPA on L. amazonensis glycolysis, we measured the activity level of three glycolytic enzymes located at different points of the pathway: (i) glucose kinases, step 1, (ii) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), step 6, and (iii) enolase, step 9. 3-BrPA, in a dose-dependent manner, significantly reduced the activity levels of all the enzymes. In addition, 3-BrPA treatment led to a reduction in the levels of phosphofruto-1-kinase (PFK) protein, suggesting that the mode of action of 3-BrPA involves the downregulation of some glycolytic enzymes. Measurement of ATP levels in promastigotes of L. amazonensis showed a significant reduction in ATP generation. The O2 consumption was also significantly inhibited in promastigotes, confirming the energy depletion effect of 3-BrPA. When 3-BrPA was added to the cells at the beginning of growth cycle, it significantly inhibited L. amazonensis proliferation in a dose-dependent manner. Furthermore, the ability to infect macrophages was reduced by approximately 50% when promastigotes were treated with 3-BrPA. Taken together, these studies corroborate with previous reports which suggest 3-BrPA as a potential drug against pathogenic microorganisms that are reliant on glucose catabolism for ATP supply.


Assuntos
Leishmania mexicana/efeitos dos fármacos , Leishmaniose Tegumentar Difusa/parasitologia , Piruvatos/farmacologia , Animais , Western Blotting , Brasil , Cricetinae , Humanos , Leishmania mexicana/enzimologia , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/metabolismo , Macrófagos/parasitologia , Camundongos , Consumo de Oxigênio/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Células RAW 264.7
6.
Parasitol Int ; 85: 102423, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34298165

RESUMO

Infections caused by Leishmania amazonensis are characterized by a persistent parasitemia due to the ability of the parasite to modulate the immune response of macrophages. It has been proposed that ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDases) could be able to suppress the host immune defense by reducing the ATP and ADP levels. The AMP generated from E-NTPDase activity can be subsequently hydrolyzed by ecto-nucleotidases, increasing the levels of adenosine, which can reduce the inflammatory response. In the present work, we provide new information about the role of E-NTPDases on infectivity and virulence of L. amazonensis. Our data demonstrate that not only the E-NTPDase activity is differentially regulated during the parasite development but also the expression of the genes ntpd1 and ntpd2. E-NTPDase activity increases significantly in axenic amastigotes and metacyclic promastigotes, both infective forms in mammalian host. A similar profile was found for mRNA levels of the ntpd1 and ntpd2 genes. Using parasites overexpressing the genes ntpd1 and ntpd2, we could demonstrate that L. amazonensis promastigotes overexpressing ntpd2 gene show a remarkable increase in their ability to interact with macrophages compared to controls. In addition, both ntpd1 and ntpd2-overexpressing parasites were more infective to macrophages than controls. The kinetics of lesion formation by transfected parasites were similar to controls until the second week. However, twenty days post-infection, mice infected with ntpd1 and ntpd2-overexpressing parasites presented significantly reduced lesions compared to controls. Interestingly, parasite load reached similar levels among the different experimental groups. Thus, our data show a non-linear relationship between higher E-NTPDase activity and lesion formation. Previous studies have correlated increased ecto-NTPDase activity with virulence and infectivity of Leishmania parasites. Based in our results, we are suggesting that the induced overexpression of E-NTPDases in L. amazonensis could increase extracellular adenosine levels, interfering with the balance of the immune response to promote the pathogen clearance and maintain the host protection.


Assuntos
Regulação da Expressão Gênica , Leishmania mexicana/genética , Leishmania mexicana/patogenicidade , Leishmaniose Tegumentar Difusa/fisiopatologia , Proteínas de Protozoários/genética , Pirofosfatases/genética , Animais , Leishmania mexicana/enzimologia , Camundongos , Proteínas de Protozoários/metabolismo , Pirofosfatases/metabolismo , Virulência
7.
Insect Biochem Mol Biol ; 133: 103511, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33278628

RESUMO

In insects, lipids are stored in the fat body mainly as triacylglycerol. Lipids can be directly provided by digestion and incorporated from the hemolymph, or synthesized de novo from other substrates such as carbohydrates and amino acids. The first step in de novo lipid synthesis is catalyzed by acetyl-CoA carboxylase (ACC), which carboxylates acetyl-CoA to form malonyl-CoA. Rhodnius prolixus is a hematophagous insect vector of Chagas disease and feeds exclusively on large and infrequent blood meals. Adult females slowly digest the blood and concomitantly accumulate lipids in the fat body. In this study, we investigated the regulation of R. prolixus ACC (RhoprACC) expression and de novo lipogenesis activity in adult females at different nutritional and metabolic conditions. A phylogenetic analysis showed that insects, similar to other arthropods and unlike vertebrate animals, have only one ACC gene. In females on the fourth day after a blood meal, RhoprACC transcript levels were similar in the anterior and posterior midgut, fat body and ovary and higher in the flight muscles. In the fat body, gene expression was higher in fasted females and decreased after a blood meal. In the posterior midgut it increased after feeding, and no variation was observed in the flight muscle. RhoprACC protein content analysis of the fat body revealed a profile similar to the gene expression, with higher protein contents before feeding and in the first two days after a blood meal. Radiolabeled acetate was used to follow de novo lipid synthesis in the fat body and it was incorporated mainly into triacylglycerol, diacylglycerol and phospholipids. This lipogenic activity was inhibited by soraphen A, an ACC inhibitor, and it varied according to the insect metabolic status. De novo lipogenesis was very low in starved females and increased during the initial days after a blood meal. The flight muscles had a very low capacity to synthesize lipids when compared to the fat body. Radiolabeled leucine was also used as a substrate for de novo lipogenesis and the same lipid classes were formed. In conclusion, our results indicate that the blood meal induces the utilization of diet-derived amino acids by de novo lipogenesis in the fat body, and that the control of this activity does not occur at the RhoprACC gene or protein expression level.


Assuntos
Corpo Adiposo/metabolismo , Lipogênese , Rhodnius , Acetil-CoA Carboxilase/genética , Animais , Sistema Digestório/metabolismo , Comportamento Alimentar , Feminino , Expressão Gênica , Genes de Insetos , Lipogênese/efeitos dos fármacos , Lipogênese/fisiologia , Macrolídeos/farmacologia , Músculos/metabolismo , Filogenia , Rhodnius/genética , Rhodnius/metabolismo , Rhodnius/fisiologia , Triglicerídeos/metabolismo
8.
Mol Biochem Parasitol ; 233: 111212, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31445076

RESUMO

Here we characterize a high-affinity Pi transport system energized by a H+ gradient in Leishmania amazonensis. Pi uptake and transcription of LamPho84 gene are differentially regulated during parasite life cycle. Our data suggest that Pi acquisition could be a pivotal task for the success of the parasite throughout its life cycle.


Assuntos
Leishmania/metabolismo , Simportadores de Próton-Fosfato , Animais , Proliferação de Células , Regulação da Expressão Gênica , Genes de Protozoários , Estágios do Ciclo de Vida , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Protozoários/metabolismo
9.
Exp Parasitol ; 205: 107748, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31442453

RESUMO

Trypanosoma cruzi (the causative agent of Chagas disease) presents a complex life cycle that involves adaptations in vertebrate and invertebrate hosts. As a protozoan parasite of hematophagous insects and mammalian hosts, T. cruzi is exposed to reactive oxygen species (ROS). To investigate the functionality of T. cruzi tartrate-resistant acid phosphatase type 5 (TcACP5), we cloned, superexpressed and purified the enzyme. Purified TcACP5 exhibited a Vmax and apparent Km for pNPP hydrolysis of 7.7 ±â€¯0.2 nmol pNP × µg-1 × h-1 and 169.3 ±â€¯22.6 µM, respectively. The pH dependence was characterized by sharp maximal activity at pH 5.0, and inhibition assays demonstrated its sensitivity to acid phosphatase inhibitors. Similar activities were obtained with saturating concentrations of P-Ser and P-Thr as substrates. The enzyme metabolizes hydrogen peroxide (H2O2) in vitro, and parasites superexpressing this enzyme were more resistant to oxidative stress promoted by H2O2. Taken together, these results suggest that TcACP5 plays a central role in phosphoryl transfer and redox reactions.


Assuntos
Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/fisiologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Imunofluorescência , Regulação Enzimológica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Microscopia Confocal , Oxirredução , Especificidade por Substrato , Fosfatase Ácida Resistente a Tartarato/antagonistas & inibidores , Fosfatase Ácida Resistente a Tartarato/química , Transfecção , Trypanosoma cruzi/efeitos dos fármacos
10.
Fungal Genet Biol ; 117: 43-53, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30030178

RESUMO

Blastocladiella emersonii is an interesting model for studding the evolution of cell differentiation in eukaryotic cell because of its taxonomic position towards the base of the fungal phylogenetic tree and because it undergoes radical morphological and biochemical changes throughout its life cycle. In this work, we biochemically characterized a high alkaline phosphotyrosine phosphatase activity present on the cell surface (ectophosphatase) of B. emersonii. The ectophosphatase activity was strongly inhibited at acidic pH values as well as by specific phosphatase inhibitors, such as sodium orthovanadate and bpv-PHEN. In addition, the enzyme activity was modulated by the extracellular concentration of inorganic phosphate (Pi) present in both reaction mixture and culture medium. Phosphotyrosine was hydrolysed at the same extent of its analog, p-NPP, while the hydrolysis of phosphothreonine was 2-fold lower, suggesting that a phosphotyrosine ectophosphatase activity is present on the cell surface of B. emersonii. The ectophosphatase activity was also strongly inhibited by EGTA, indicating the participation of Ca2+ ions on catalysis. The hydrolysis of p-NPP was differentially regulated throughout the B. emersonii life cycle, suggesting that the ectophosphatase activity could be involved in cell differentiation processes. In support of this, the addition of bpv-PHEN or vanadate at the beginning of germination inhibited the differentiation of zoospores to germ cells, compared to control or tartrate-treated cells. On the other hand, if the inhibitors are added 15 or 30 min after initiation of germination the inhibitory effect on zoospore germination decreases significantly, suggesting that the phosphotyrosine ectophosphatase activity is important at the first minutes of germination. The addition of vanadate, molybdate and bpv-PHEN during vegetative growth inhibited the enlargement of the cells compared to control or tartrate-treated cells. Finally, vanadate or bpv-PHEN added during sporulation strongly inhibited zoospore biogenesis, indicating an important role of such ectophosphatases in this differentiation process. Taken together, these data show the existence of a high alkaline ectophosphotyrosine phosphatase activity in B. emersonii that is probably tied to cell differentiation processes of the fungus.


Assuntos
Blastocladiella/genética , Diferenciação Celular/genética , Filogenia , Esporos Fúngicos/genética , Blastocladiella/enzimologia , Membrana Celular/enzimologia , Membrana Celular/genética , Proteínas Fúngicas , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases , Esporos Fúngicos/enzimologia
11.
Fungal Genet Biol ; 115: 20-32, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29627365

RESUMO

The model yeast Saccharomyces cerevisiae elicits a transcriptional response to phosphate (Pi) depletion. To determine the origins of the phosphate response (PHO) system, we bioinformatically identified putative PHO components in the predicted proteomes of diverse fungi. Our results suggest that the PHO system is ancient; however, components have been expanded or lost in different fungal lineages. To show that a similar physiological response is present in deeply-diverging fungi we examined the transcriptional and physiological response of PHO genes to Pi depletion in the blastocladiomycete Blastocladiella emersonii. Our physiological experiments indicate that B. emersonii relies solely on high-affinity Na+-independent Pho84-like transporters. In response to Pi depletion, BePho84 paralogues were 4-8-fold transcriptionally upregulated, whereas several other PHO homologues like phosphatases and vacuolar transporter chaperone (VTC) complex components show 2-3-fold transcriptional upregulation. Since Pi has been shown to be important during the development of B. emersonii, we sought to determine if PHO genes are differentially regulated at different lifecycle stages. We demonstrate that a similar set of PHO transporters and phosphatases are upregulated at key points during B. emersonii development. Surprisingly, some genes upregulated during Pi depletion, including VTC components, are repressed at these key stages of development indicating that PHO genes are regulated by different pathways in different developmental and environmental situations. Overall, our findings indicate that a complex PHO network existed in the ancient branches of the fungi, persists in diverse extant fungi, and that this ancient network is likely to be involved in development and cell cycle regulation.


Assuntos
Blastocladiella/genética , Sequência Conservada/genética , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Blastocladiella/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Homeostase/genética , Proteoma/genética , Proteoma/metabolismo , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais , Esporos Fúngicos
12.
Cell Biol Int ; 42(6): 670-682, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29384228

RESUMO

Nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes that belong to the GDA1/CD39 protein superfamily. These enzymes catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP). Biochemical characterization of the nucleotidases/NTPDases from various types of cells, including those from plants, animals, and pathogenic organisms, has revealed the existence of several isoforms with different specificities with respect to divalent cations (magnesium, calcium, manganese, and zinc) and substrates. In mammals, the NTPDases play important roles in the regulation of thrombosis and inflammation. In parasites of the genus Leishmania, the causative agents of leishmaniasis, two NTPDase isoforms, termed NTPDase-1 and NTPDase-2 have been described. Independently of their cellular localization, whether cell-surface localized, secreted or targeted to other organelles, in some Leishmania species these NTPDases could be involved in parasite growth, infectivity, and virulence. Experimental evidence has suggested that the hydrolysis of ATP and ADP by parasite ecto-nucleotidases can down-modulate the host immune response. In this context, the present work provides an overview of recent works that show strong evidence not only of the involvement of the nucleotidases/NTPDases in Leishmania spp infectivity and virulence but also of the molecular mechanisms that lead to the success of the parasitic infection.


Assuntos
Leishmania/enzimologia , Nucleosídeo-Trifosfatase/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antígenos CD/química , Antígenos CD/metabolismo , Apirase/química , Apirase/metabolismo , Humanos , Leishmania/imunologia , Leishmania/fisiologia , Leishmaniose/parasitologia , Leishmaniose/patologia , Leishmaniose/veterinária , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Virulência
13.
Exp Parasitol ; 169: 111-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27531705

RESUMO

The protozoan parasite Leishmania amazonensis is the etiological agent of cutaneous leishmaniasis. During its life cycle, the flagellated metacyclic promastigote forms are transmitted to vertebrate hosts by sandfly bites, and they develop into amastigotes inside macrophages, where they multiply. L. amazonensis possesses a bifunctional enzyme, called 3'-nucleotidase/nuclease (3'NT/NU), which is able to hydrolyze extracellular 3'-monophosphorylated nucleosides and nucleic acids. 3'NT/NU plays an important role in the generation of extracellular adenosine and has been described as a key enzyme in the acquisition of purines by trypanosomatids. Furthermore, it has been observed that 3'NT/NU also plays a valuable role in the establishment of parasitic infection. In this context, this study aimed to investigate the modulation of the 3'-nucleotidase (3'NT) activity of L. amazonensis by several nucleotides. It was observed that 3'NT activity is inhibited by micromolar concentrations of guanosine and guanine nucleotides. The inhibition promoted by 5'-GMP on the 3'NT activity of L. amazonensis is reversible and uncompetitive because the addition of the inhibitor decreased the kinetic parameters Km and Vmax. Finally, we found that the addition of 5'-GMP is able to reverse the stimulation promoted by 3'-AMP in a macrophage-parasite interaction assay. The determination of compounds that can inhibit the 3'NT activity of Leishmania is very important because this enzyme does not occur in mammals, making it a potential therapeutic target.


Assuntos
Guanosina Difosfato/farmacologia , Guanosina Monofosfato/farmacologia , Guanosina Trifosfato/farmacologia , Leishmania mexicana/enzimologia , Nucleotidases/antagonistas & inibidores , Animais , Cinética , Leishmania mexicana/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Nucleotidases/metabolismo , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA