Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Autism ; 14(1): 28, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528484

RESUMO

BACKGROUND: Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by developmental delay, intellectual disability, and autistic-like behaviors and is primarily caused by haploinsufficiency of SHANK3 gene. Currently, there is no specific treatment for PMS, highlighting the need for a better understanding of SHANK3 functions and the underlying pathophysiological mechanisms in the brain. We hypothesize that SHANK3 haploinsufficiency may lead to alterations in the inhibitory system, which could be linked to the excitatory/inhibitory imbalance observed in models of autism spectrum disorder (ASD). Investigation of these neuropathological features may shed light on the pathogenesis of PMS and potential therapeutic interventions. METHODS: We recorded local field potentials and visual evoked responses in the visual cortex of Shank3∆11-/- mice. Then, to understand the impact of Shank3 in inhibitory neurons, we generated Pv-cre+/- Shank3Fl/Wt conditional mice, in which Shank3 was deleted in parvalbumin-positive neurons. We characterized the phenotype of this murine model and we compared this phenotype before and after ganaxolone administration. RESULTS: We found, in the primary visual cortex, an alteration of the gain control of Shank3 KO compared with Wt mice, indicating a deficit of inhibition on pyramidal neurons. This alteration was rescued after the potentiation of GABAA receptor activity by Midazolam. Behavioral analysis showed an impairment in grooming, memory, and motor coordination of Pv-cre+/- Shank3Fl/Wt compared with Pv-cre+/- Shank3Wt/Wt mice. These deficits were rescued with ganaxolone, a positive modulator of GABAA receptors. Furthermore, we demonstrated that treatment with ganaxolone also ameliorated evocative memory deficits and repetitive behavior of Shank3 KO mice. LIMITATIONS: Despite the significant findings of our study, some limitations remain. Firstly, the neurobiological mechanisms underlying the link between Shank3 deletion in PV neurons and behavioral alterations need further investigation. Additionally, the impact of Shank3 on other classes of inhibitory neurons requires further exploration. Finally, the pharmacological activity of ganaxolone needs further characterization to improve our understanding of its potential therapeutic effects. CONCLUSIONS: Our study provides evidence that Shank3 deletion leads to an alteration in inhibitory feedback on cortical pyramidal neurons, resulting in cortical hyperexcitability and ASD-like behavioral problems. Specifically, cell type-specific deletion of Shank3 in PV neurons was associated with these behavioral deficits. Our findings suggest that ganaxolone may be a potential pharmacological approach for treating PMS, as it was able to rescue the behavioral deficits in Shank3 KO mice. Overall, our study highlights the importance of investigating the role of inhibitory neurons and potential therapeutic interventions in neurodevelopmental disorders such as PMS.


Assuntos
Transtorno do Espectro Autista , Comportamento Problema , Camundongos , Animais , Transtorno do Espectro Autista/genética , Proteínas do Tecido Nervoso/genética , Neurônios , Proteínas dos Microfilamentos
2.
J Pers Med ; 12(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36143309

RESUMO

The advent of intra-nasal esketamine (ESK), one of the first so called fast-acting antidepressant, promises to revolutionize the management of treatment resistant depression (TRD). This NMDA receptor antagonist has proven to be rapidly effective in the short- and medium-term course of the illness, revealing its potential in targeting response in TRD. Although many TRD ESK responders are able to achieve remission, a considerable portion of them undergo a metamorphosis of their depression into different clinical presentations, characterized by instable responses and high recurrence rates that can be considered closer to the concept of Difficult to Treat Depression (DTD) than to TRD. The management of these DTD patients usually requires a further complex multidisciplinary approach and can benefit from the valuable contribution of new personalized medicine tools such as therapeutic drug monitoring and pharmacogenetics. Despite this, these patients usually come with long and complex previous treatments history and, often, advanced and sophisticated ongoing pharmacological schemes that can make the finding of new alternative options to face the current recurrences extremely challenging. In this paper, we describe two DTD patients-already receiving intranasal ESK but showing an instable course-who were clinically stabilized by the association with minocycline, a semisynthetic second-generation tetracycline with known and promising antidepressant properties.

3.
Mol Ther ; 30(7): 2474-2490, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390543

RESUMO

The development of new therapeutic avenues that target the early stages of Alzheimer's disease (AD) is urgently necessary. A disintegrin and metalloproteinase domain 10 (ADAM10) is a sheddase that is involved in dendritic spine shaping and limits the generation of amyloid-ß. ADAM10 endocytosis increases in the hippocampus of AD patients, resulting in the decreased postsynaptic localization of the enzyme. To restore this altered pathway, we developed a cell-permeable peptide (PEP3) with a strong safety profile that is able to interfere with ADAM10 endocytosis, upregulating the postsynaptic localization and activity of ADAM10. After extensive validation, experiments in a relevant animal model clarified the optimal timing of the treatment window. PEP3 administration was effective for the rescue of cognitive defects in APP/PS1 mice only if administered at an early disease stage. Increased ADAM10 activity promoted synaptic plasticity, as revealed by changes in the molecular compositions of synapses and the spine morphology. Even though further studies are required to evaluate efficacy and safety issues of long-term administration of PEP3, these results provide preclinical evidence to support the therapeutic potential of PEP3 in AD.


Assuntos
Doença de Alzheimer , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Endocitose , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Sinapses/metabolismo
4.
Cell Calcium ; 100: 102480, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607180

RESUMO

Calcineurin (CaN), acting downstream of intracellular calcium signals, orchestrates cellular remodeling in many cellular types. In astrocytes, major homeostatic players in the central nervous system (CNS), CaN is involved in neuroinflammation and gliosis, while its role in healthy CNS or in early neuro-pathogenesis is poorly understood. Here we report that in mice with conditional deletion of CaN in GFAP-expressing astrocytes (astroglial calcineurin KO, ACN-KO), at 1 month of age, transcription was largely unchanged, while the proteome was deranged in the hippocampus and cerebellum. Gene ontology analysis revealed overrepresentation of annotations related to myelin sheath, mitochondria, ribosome and cytoskeleton. Over-represented pathways were related to protein synthesis, oxidative phosphorylation, mTOR and neurological disorders, including Alzheimer's disease (AD) and seizure disorder. Comparison with published proteomic datasets showed significant overlap with the proteome of a familial AD mouse model and of human subjects with drug-resistant seizures. ACN-KO mice showed no alterations of motor activity, equilibrium, anxiety or depressive state. However, in Barnes maze ACN-KO mice learned the task but adopted serial search strategy. Strikingly, beginning from about 5 months of age ACN-KO mice developed spontaneous tonic-clonic seizures with an inflammatory signature of epileptic brains. Altogether, our data suggest that the deletion of astroglial CaN produces features of neurological disorders and predisposes mice to seizures. We suggest that calcineurin in astrocytes may serve as a novel Ca2+-sensitive switch which regulates protein expression and homeostasis in the central nervous system.


Assuntos
Doença de Alzheimer , Epilepsia , Doença de Alzheimer/genética , Animais , Astrócitos , Calcineurina , Epilepsia/genética , Camundongos , Doenças Neuroinflamatórias , Proteoma , Proteômica , Convulsões/genética
5.
J Neurochem ; 159(1): 12-14, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252196

RESUMO

Various neuroimaging approaches have reported alterations in brain connectivity in patients with autism spectrum disorder (ASD). Nevertheless, specific cellular and molecular mechanisms underlying these alterations remain to be elucidated. In the present Editorial, we highlight an article in the current issue of the Journal of Neurochemistry that provides first evidence for the structural and cellular basis of an atypical corpus callosum long-distance connectivity impairments observed in ASD patients. The authors used a juvenile valproic acid (VPA) rat model of ASD that presents with reduced myelin level, specifically in the corpus callosum, and with an altered myelin sheet structure that is closely associated with the behavioral alteration found in these rats. This hypomyelination occurs primarily during infancy prior to oligodendroglial alterations, implicating that axonal-oligodendroglial connections are compromised in this model. Concomitant with the hypomyelination, the ASD rat model showed an atypical brain metabolic pattern, with hypometabolic activity across the whole brain, and hypermetabolism in brain areas related to autistic-like behavior. These findings contribute to unravel the neurobiological basis underlying white matter alteration and altered long-distance brain connectivity as described in ASD, paving the way to the development of new early diagnostic markers and toward developing future specific therapies for ASD.


Assuntos
Transtorno Autístico/induzido quimicamente , Transtorno Autístico/metabolismo , Corpo Caloso/metabolismo , Rede Nervosa/metabolismo , Ácido Valproico/toxicidade , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Transtorno Autístico/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Corpo Caloso/efeitos dos fármacos , Humanos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Ratos
6.
Curr Opin Pharmacol ; 56: 93-101, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33429227

RESUMO

The N-methyl-d-aspartate (NMDA) receptor, among the ionotropic glutamate receptors, are fundamental to integrating and transducing complex signaling in neurons. Glutamate activation of these receptors mediates intracellular signals essential to neuronal and synaptic formation and synaptic plasticity and also contribute to excitotoxic processes in several neurological disorders. The NMDA receptor signaling is mediated by the permeability to Ca2+ and by the large network of signaling and scaffolding proteins associated mostly with the large C-terminal domain of GluN2 subunits. Important studies showed that GluN2 C-terminal interactions differ in accordance with the GluN2 subtype, and this influences the type of signaling that NMDA receptor activity controls. Thus, it is not surprising that mutations in genes that codify for NMDA receptor subunits have been associated with severe neuronal diseases. We will review recent advances and explore outstanding problems in this active area of research.


Assuntos
Neurônios , Receptores de N-Metil-D-Aspartato , Humanos , Plasticidade Neuronal , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Transdução de Sinais
7.
EMBO J ; 40(5): e104267, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491217

RESUMO

Impairments in social relationships and awareness are features observed in autism spectrum disorders (ASDs). However, the underlying mechanisms remain poorly understood. Shank2 is a high-confidence ASD candidate gene and localizes primarily to postsynaptic densities (PSDs) of excitatory synapses in the central nervous system (CNS). We show here that loss of Shank2 in mice leads to a lack of social attachment and bonding behavior towards pubs independent of hormonal, cognitive, or sensitive deficits. Shank2-/- mice display functional changes in nuclei of the social attachment circuit that were most prominent in the medial preoptic area (MPOA) of the hypothalamus. Selective enhancement of MPOA activity by DREADD technology re-established social bonding behavior in Shank2-/- mice, providing evidence that the identified circuit might be crucial for explaining how social deficits in ASD can arise.


Assuntos
Transtorno Autístico/tratamento farmacológico , Modelos Animais de Doenças , Relações Interpessoais , Comportamento Materno/efeitos dos fármacos , Proteínas do Tecido Nervoso/fisiologia , Piperazinas/farmacologia , Área Pré-Óptica/efeitos dos fármacos , Animais , Transtorno Autístico/etiologia , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Área Pré-Óptica/metabolismo , Área Pré-Óptica/patologia , Sinapses
8.
Mol Psychiatry ; 26(6): 1928-1944, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33402706

RESUMO

Human mutations and haploinsufficiency of the SHANK family genes are associated with autism spectrum disorders (ASD) and intellectual disability (ID). Complex phenotypes have been also described in all mouse models of Shank mutations and deletions, consistent with the heterogeneity of the human phenotypes. However, the specific role of Shank proteins in synapse and neuronal functions remain to be elucidated. Here, we generated a new mouse model to investigate how simultaneously deletion of Shank1 and Shank3 affects brain development and behavior in mice. Shank1-Shank3 DKO mice showed a low survival rate, a developmental strong reduction in the activation of intracellular signaling pathways involving Akt, S6, ERK1/2, and eEF2 during development and a severe behavioral impairments. Our study suggests that Shank1 and Shank3 proteins are essential to developmentally regulate the activation of Akt and correlated intracellular pathways crucial for mammalian postnatal brain development and synaptic plasticity. Therefore, Akt function might represent a new therapeutic target for enhancing cognitive abilities of syndromic ASD patients.


Assuntos
Transtorno do Espectro Autista , Proteínas Proto-Oncogênicas c-akt , Animais , Transtorno do Espectro Autista/genética , Humanos , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Sinapses
10.
Front Neurosci ; 12: 336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875623

RESUMO

Both astronauts and patients affected by chronic movement-limiting pathologies face impairment in muscle and/or brain performance. Increased patient survival expectations and the expected longer stays in space by astronauts may result in prolonged motor deprivation and consequent pathological effects. Severe movement limitation can influence not only the motor and metabolic systems but also the nervous system, altering neurogenesis and the interaction between motoneurons and muscle cells. Little information is yet available about the effect of prolonged muscle disuse on neural stem cells characteristics. Our in vitro study aims to fill this gap by focusing on the biological and molecular properties of neural stem cells (NSCs). Our analysis shows that NSCs derived from the SVZ of HU mice had shown a reduced proliferation capability and an altered cell cycle. Furthermore, NSCs obtained from HU animals present an incomplete differentiation/maturation. The overall results support the existence of a link between reduction of exercise and muscle disuse and metabolism in the brain and thus represent valuable new information that could clarify how circumstances such as the absence of load and the lack of movement that occurs in people with some neurological diseases, may affect the properties of NSCs and contribute to the negative manifestations of these conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA