Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Matrix Biol ; 129: 44-58, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582404

RESUMO

Extracellular matrix (ECM) pathologic remodeling underlies many disorders, including muscular dystrophy. Tissue decellularization removes cellular components while leaving behind ECM components. We generated "on-slide" decellularized tissue slices from genetically distinct dystrophic mouse models. The ECM of dystrophin- and sarcoglycan-deficient muscles had marked thrombospondin 4 deposition, while dysferlin-deficient muscle had excess decorin. Annexins A2 and A6 were present on all dystrophic decellularized ECMs, but annexin matrix deposition was excessive in dysferlin-deficient muscular dystrophy. Muscle-directed viral expression of annexin A6 resulted in annexin A6 in the ECM. C2C12 myoblasts seeded onto decellularized matrices displayed differential myoblast mobility and fusion. Dystrophin-deficient decellularized matrices inhibited myoblast mobility, while dysferlin-deficient decellularized matrices enhanced myoblast movement and differentiation. Myoblasts treated with recombinant annexin A6 increased mobility and fusion like that seen on dysferlin-deficient decellularized matrix and demonstrated upregulation of ECM and muscle cell differentiation genes. These findings demonstrate specific fibrotic signatures elicit effects on myoblast activity.


Assuntos
Diferenciação Celular , Movimento Celular , Disferlina , Matriz Extracelular , Mioblastos , Sarcoglicanas , Animais , Mioblastos/metabolismo , Mioblastos/citologia , Matriz Extracelular/metabolismo , Camundongos , Sarcoglicanas/genética , Sarcoglicanas/metabolismo , Disferlina/genética , Disferlina/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Distrofina/genética , Distrofina/metabolismo , Anexina A2/genética , Anexina A2/metabolismo , Decorina/genética , Decorina/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Músculo Esquelético/metabolismo
2.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425960

RESUMO

Genetic background shifts the severity of muscular dystrophy. In mice, the DBA/2J strain confers a more severe muscular dystrophy phenotype, whereas the Murphy's Roth Large (MRL) strain has "super-healing" properties that reduce fibrosis. A comparative analysis of the Sgcg null model of Limb Girdle Muscular Dystrophy in the DBA/2J versus MRL strain showed the MRL background was associated with greater myofiber regeneration and reduced structural degradation of muscle. Transcriptomic profiling of dystrophic muscle in the DBA/2J and MRL strains indicated strain-dependent expression of the extracellular matrix (ECM) and TGF-ß signaling genes. To investigate the MRL ECM, cellular components were removed from dystrophic muscle sections to generate decellularized "myoscaffolds". Decellularized myoscaffolds from dystrophic mice in the protective MRL strain had significantly less deposition of collagen and matrix-bound TGF-ß1 and TGF-ß3 throughout the matrix, and dystrophic myoscaffolds from the MRL background were enriched in myokines. C2C12 myoblasts were seeded onto decellularized matrices from Sgcg-/- MRL and Sgcg-/- DBA/2J matrices. Acellular myoscaffolds from the dystrophic MRL background induced myoblast differentiation and growth compared to dystrophic myoscaffolds from the DBA/2J matrices. These studies establish that the MRL background also generates its effect through a highly regenerative ECM, which is active even in muscular dystrophy.

3.
Sci Transl Med ; 13(610): eabf0376, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34516828

RESUMO

Duchenne muscular dystrophy, like other muscular dystrophies, is a progressive disorder hallmarked by muscle degeneration, inflammation, and fibrosis. Latent transforming growth factor ß (TGFß) binding protein 4 (LTBP4) is an extracellular matrix protein found in muscle. LTBP4 sequesters and inhibits a precursor form of TGFß. LTBP4 was originally identified from a genome-wide search for genetic modifiers of muscular dystrophy in mice, where there are two different alleles. The protective form of LTBP4, which contains an insertion of 12 amino acids in the protein's hinge region, was linked to increased sequestration of latent TGFß, enhanced muscle membrane stability, and reduced muscle fibrosis. The deleterious form of LTBP4 protein, lacking 12 amino acids, was more susceptible to proteolysis and promoted release of latent TGF-ß, and together, these data underscored the functional role of LTBP4's hinge. Here, we generated a monoclonal human anti-LTBP4 antibody directed toward LTBP4's hinge region. In vitro, anti-LTBP4 bound LTBP4 protein and reduced LTBP4 proteolytic cleavage. In isolated myofibers, the LTBP4 antibody stabilized the sarcolemma from injury. In vivo, anti-LTBP4 treatment of dystrophic mice protected muscle against force loss induced by eccentric contraction. Anti-LTBP4 treatment also reduced muscle fibrosis and enhanced muscle force production, including in the diaphragm muscle, where respiratory function was improved. Moreover, the anti-LTBP4 in combination with prednisone, a standard of care for Duchenne muscular dystrophy, further enhanced muscle function and protected against injury in mdx mice. These data demonstrate the potential of anti-LTBP4 antibodies to treat muscular dystrophy.


Assuntos
Distrofias Musculares , Distrofia Muscular de Duchenne , Proteínas de Transporte , Fibrose , Humanos , Proteínas de Ligação a TGF-beta Latente/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Distrofias Musculares/patologia , Distrofias Musculares/terapia , Distrofia Muscular de Duchenne/patologia , Fator de Crescimento Transformador beta/metabolismo
4.
Circ Heart Fail ; 13(10): e006926, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32993371

RESUMO

BACKGROUND: The failing heart is characterized by changes in gene expression. However, the regulatory regions of the genome that drive these gene expression changes have not been well defined in human hearts. METHODS: To define genome-wide enhancer and promoter use in heart failure, cap analysis of gene expression sequencing was applied to 3 healthy and 4 failed human hearts to identify promoter and enhancer regions used in left ventricles. Healthy hearts were derived from donors unused for transplantation and failed hearts were obtained as discarded tissue after transplantation. RESULTS: Cap analysis of gene expression sequencing identified a combined potential for ≈23 000 promoters and ≈5000 enhancers active in human left ventricles. Of these, 17 000 promoters and 1800 enhancers had additional support for their regulatory function. Comparing promoter usage between healthy and failed hearts highlighted promoter shifts which altered aminoterminal protein sequences. Enhancer usage between healthy and failed hearts identified a majority of differentially used heart failure enhancers were intronic and primarily localized within the first intron, revealing this position as a common feature associated with tissue-specific gene expression changes in the heart. CONCLUSIONS: This data set defines the dynamic genomic regulatory landscape underlying heart failure and serves as an important resource for understanding genetic contributions to cardiac dysfunction. Additionally, regulatory changes contributing to heart failure are attractive therapeutic targets for controlling ventricular remodeling and clinical progression.


Assuntos
Elementos Facilitadores Genéticos , Insuficiência Cardíaca/genética , Regiões Promotoras Genéticas , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , RNA-Seq , Transcrição Gênica , Transcriptoma , Adulto Jovem
5.
Hum Mol Genet ; 28(2): 279-289, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30289454

RESUMO

Like other single-gene disorders, muscular dystrophy displays a range of phenotypic heterogeneity even with the same primary mutation. Identifying genetic modifiers capable of altering the course of muscular dystrophy is one approach to deciphering gene-gene interactions that can be exploited for therapy development. To this end, we used an intercross strategy in mice to map modifiers of muscular dystrophy. We interrogated genes of interest in an interval on mouse chromosome 10 associated with body mass in muscular dystrophy as skeletal muscle contributes significantly to total body mass. Using whole-genome sequencing of the two parental mouse strains combined with deep RNA sequencing, we identified the Met62Ile substitution in the dual-specificity phosphatase 6 (Dusp6) gene from the DBA/2 J (D2) mouse strain. DUSP6 is a broadly expressed dual-specificity phosphatase protein, which binds and dephosphorylates extracellular-signal-regulated kinase (ERK), leading to decreased ERK activity. We found that the Met62Ile substitution reduced the interaction between DUSP6 and ERK resulting in increased ERK phosphorylation and ERK activity. In dystrophic muscle, DUSP6 Met62Ile is strongly upregulated to counteract its reduced activity. We found that myoblasts from the D2 background were insensitive to a specific small molecule inhibitor of DUSP6, while myoblasts expressing the canonical DUSP6 displayed enhanced proliferation after exposure to DUSP6 inhibition. These data identify DUSP6 as an important regulator of ERK activity in the setting of muscle growth and muscular dystrophy.


Assuntos
Fosfatase 6 de Especificidade Dupla/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Desenvolvimento Muscular/genética , Distrofia Muscular Animal/genética , Animais , Linhagem Celular , Mapeamento Cromossômico , Fosfatase 6 de Especificidade Dupla/antagonistas & inibidores , Feminino , Masculino , Camundongos Endogâmicos DBA , Distrofia Muscular Animal/enzimologia , Mutação de Sentido Incorreto , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA