Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559224

RESUMO

Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits. In contrast, abnormal synchronization within MEC and between HPC-MEC emerged later, by 8 weeks after Pilo-SE, when spatial memory impairment was more severe. Furthermore, a distinct subpopulation of MEC layer 3 excitatory neurons (active at theta troughs) was specifically impaired in epileptic mice. Together, these findings suggest that hippocampal-entorhinal circuit dysfunction accumulates and shifts as cognitive impairment progresses in TLE.

2.
Nat Neurosci ; 23(2): 229-238, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907437

RESUMO

Temporal lobe epilepsy causes severe cognitive deficits, but the circuit mechanisms remain unknown. Interneuron death and reorganization during epileptogenesis may disrupt the synchrony of hippocampal inhibition. To test this, we simultaneously recorded from the CA1 and dentate gyrus in pilocarpine-treated epileptic mice with silicon probes during head-fixed virtual navigation. We found desynchronized interneuron firing between the CA1 and dentate gyrus in epileptic mice. Since hippocampal interneurons control information processing, we tested whether CA1 spatial coding was altered in this desynchronized circuit, using a novel wire-free miniscope. We found that CA1 place cells in epileptic mice were unstable and completely remapped across a week. This spatial instability emerged around 6 weeks after status epilepticus, well after the onset of chronic seizures and interneuron death. Finally, CA1 network modeling showed that desynchronized inputs can impair the precision and stability of CA1 place cells. Together, these results demonstrate that temporally precise intrahippocampal communication is critical for spatial processing.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Giro Denteado/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Interneurônios/fisiologia , Vias Neurais/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Sci Rep ; 9(1): 19979, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882950

RESUMO

Tracking animal behavior by video is one of the most common tasks in the life sciences. Although commercial software exists for executing this task, they often present enormous cost to the researcher and can entail purchasing hardware that is expensive and lacks adaptability. Additionally, the underlying code is often proprietary. Alternatively, available open-source options frequently require model training and can be challenging for those inexperienced with programming. Here we present an open-source and platform independent set of behavior analysis pipelines using interactive Python that researchers with no prior programming experience can use. Two modules are described. One module can be used for the positional analysis of an individual animal, amenable to a wide range of behavioral tasks. A second module is described for the analysis of freezing behavior. For both modules, a range of interactive plots and visualizations are available to confirm that chosen parameters produce the anticipated results. Moreover, batch processing tools for the fast analysis of multiple videos is provided, and frame-by-frame output makes alignment with biological recording data simple. Lastly, options for cropping video frames to mitigate the influence of fiberoptic/electrophysiology cables, analyzing specified portions of time, and defining regions of interest, are readily implemented.


Assuntos
Comportamento Animal , Software , Gravação em Vídeo , Animais , Análise de Dados , Fenômenos Eletrofisiológicos , Movimento (Física) , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA