Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Res ; 252(Pt 2): 118877, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609067

RESUMO

Uranium is a natural radioelement (also a model for heavier actinides), but may be released through anthropogenic activities. In order to assess its environmental impact in a given ecosystem, such as the marine system, it is essential to understand its distribution and speciation, and also to quantify its bioaccumulation. Our objective was to improve our understanding of the transfer and accumulation of uranium in marine biota with mussels taken here as sentinel species because of their sedentary nature and ability to filter seawater. We report here on the investigation of uranium accumulation, speciation, and localization in Mytilus galloprovincialis using a combination of several analytical (Inductively Coupled Plasma Mass Spectrometry, ICP-MS), spectroscopic (X ray Absorption Spectroscopy, XAS, Time Resolved Laser Induced Fluorescence Spectroscopy, TRLIFS), and imaging (Transmission Electron Microscopy, TEM, µ-XAS, Secondary Ion Mass Spectrometry, SIMS) techniques. Two cohorts of mussels from the Toulon Naval Base and the Villefranche-sur-Mer location were studied. The measurement of uranium Concentration Factor (CF) values show a clear trend in the organs of M. galloprovincialis: hepatopancreas â‰« gill > body ≥ mantle > foot. Although CF values for the entire mussel are comparable for TNB and VFM, hepatopancreas values show a significant increase in those from Toulon versus Villefranche-sur-Mer. Two organs of interest were selected for further spectroscopic investigations: the byssus and the hepatopancreas. In both cases, U(VI) (uranyl) is accumulated in a diffuse pattern, most probably linked to protein complexing functions, with the absence of a condensed phase. While such speciation studies on marine organisms can be challenging, they are an essential step for deciphering the impact of metallic radionuclides on the marine biota in the case of accidental release. Following our assumptions on uranyl speciation in both byssus and hepatopancreas, further steps will include the inventory and identification of the proteins or metabolites involved.


Assuntos
Mytilus , Urânio , Poluentes Radioativos da Água , Mytilus/química , Mytilus/metabolismo , Animais , Urânio/análise , Poluentes Radioativos da Água/análise , Espectrometria de Massas
2.
BMC Biol ; 22(1): 100, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679707

RESUMO

BACKGROUND: Plant pathogens secrete effector proteins into host cells to suppress immune responses and manipulate fundamental cellular processes. One of these processes is autophagy, an essential recycling mechanism in eukaryotic cells that coordinates the turnover of cellular components and contributes to the decision on cell death or survival. RESULTS: We report the characterization of AVH195, an effector from the broad-spectrum oomycete plant pathogen, Phytophthora parasitica. We show that P. parasitica expresses AVH195 during the biotrophic phase of plant infection, i.e., the initial phase in which host cells are maintained alive. In tobacco, the effector prevents the initiation of cell death, which is caused by two pathogen-derived effectors and the proapoptotic BAX protein. AVH195 associates with the plant vacuolar membrane system and interacts with Autophagy-related protein 8 (ATG8) isoforms/paralogs. When expressed in cells from the green alga, Chlamydomonas reinhardtii, the effector delays vacuolar fusion and cargo turnover upon stimulation of autophagy, but does not affect algal viability. In Arabidopsis thaliana, AVH195 delays the turnover of ATG8 from endomembranes and promotes plant susceptibility to P. parasitica and the obligate biotrophic oomycete pathogen Hyaloperonospora arabidopsidis. CONCLUSIONS: Taken together, our observations suggest that AVH195 targets ATG8 to attenuate autophagy and prevent associated host cell death, thereby favoring biotrophy during the early stages of the infection process.


Assuntos
Autofagia , Nicotiana , Phytophthora , Doenças das Plantas , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Nicotiana/microbiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Interações Hospedeiro-Patógeno
3.
Dev Cell ; 59(3): 400-414.e5, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38228140

RESUMO

Epithelial furrowing is a fundamental morphogenetic process during gastrulation, neurulation, and body shaping. A furrow often results from a fold that propagates along a line. How fold formation and propagation are controlled and driven is poorly understood. To shed light on this, we study the formation of the cephalic furrow, a fold that runs along the embryo dorsal-ventral axis during Drosophila gastrulation and the developmental role of which is still unknown. We provide evidence of its function and show that epithelial furrowing is initiated by a group of cells. This cellular cluster works as a pacemaker, triggering a bidirectional morphogenetic wave powered by actomyosin contractions and sustained by de novo medial apex-to-apex cell adhesion. The pacemaker's Cartesian position is under the crossed control of the anterior-posterior and dorsal-ventral gene patterning systems. Thus, furrow formation is driven by a mechanical trigger wave that travels under the control of a multidimensional genetic guide.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Gastrulação , Proteínas de Drosophila/metabolismo , Morfogênese , Actomiosina/metabolismo , Embrião não Mamífero/metabolismo
5.
Sci Adv ; 9(4): eadd2873, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706182

RESUMO

During meiosis, DNA recombination allows the shuffling of genetic information between the maternal and paternal chromosomes. Recombination is initiated by double-strand breaks (DSBs) catalyzed by the conserved enzyme Spo11. How this crucial event is connected to other meiotic processes is unexpectedly variable depending on the species. Here, we knocked down Spo11 by CRISPR in the jellyfish Clytia hemisphaerica. Germ cells in Clytia Spo11 mutants fail to assemble synaptonemal complexes and chiasmata, and in consequence, homologous chromosome pairs in females remain unassociated during oocyte growth and meiotic divisions, creating aneuploid but fertilizable eggs that develop into viable larvae. Clytia thus shares an ancient eukaryotic dependence of synapsis and chromosome segregation on Spo11-generated DSBs. Phylogenetically, Clytia belongs to Cnidaria, the sister clade to Bilateria where classical animal model species are found, so these results provide fresh evolutionary perspectives on meiosis regulation.


Assuntos
Cnidários , Animais , Feminino , Cromossomos , Meiose/genética , Células Eucarióticas
6.
Cell Rep ; 39(11): 110949, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705045

RESUMO

Despite the ubiquitous function of macrophages across the body, the diversity, origin, and function of adrenal gland macrophages remain largely unknown. We define the heterogeneity of adrenal gland immune cells using single-cell RNA sequencing and use genetic models to explore the developmental mechanisms yielding macrophage diversity. We define populations of monocyte-derived and embryonically seeded adrenal gland macrophages and identify a female-specific subset with low major histocompatibility complex (MHC) class II expression. In adulthood, monocyte recruitment dominates adrenal gland macrophage maintenance in female mice. Adrenal gland macrophage sub-tissular distribution follows a sex-dimorphic pattern, with MHC class IIlow macrophages located at the cortico-medullary junction. Macrophage sex dimorphism depends on the presence of the cortical X-zone. Adrenal gland macrophage depletion results in altered tissue homeostasis, modulated lipid metabolism, and decreased local aldosterone production during stress exposure. Overall, these data reveal the heterogeneity of adrenal gland macrophages and point toward sex-restricted distribution and functions of these cells.


Assuntos
Glândulas Suprarrenais , Macrófagos , Monócitos , Caracteres Sexuais , Glândulas Suprarrenais/metabolismo , Animais , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Contagem de Leucócitos , Macrófagos/metabolismo , Masculino , Camundongos
7.
J Cell Sci ; 134(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483367

RESUMO

Ciliogenesis is a coordinated process initiated by the recruitment and fusion of pre-ciliary vesicles at the distal appendages of the mother centriole through mechanisms that remain unclear. Here, we report that EFA6A (also known as PSD), an exchange factor for the small G protein Arf6, is involved in early stage of ciliogenesis by promoting the fusion of distal appendage vesicles forming the ciliary vesicle. EFA6A is present in the vicinity of the mother centriole before primary cilium assembly and prior to the arrival of Arl13B-containing vesicles. During ciliogenesis, EFA6A initially accumulates at the mother centriole and later colocalizes with Arl13B along the ciliary membrane. EFA6A depletion leads to the inhibition of ciliogenesis, the absence of centrosomal Rab8-positive structures and the accumulation of Arl13B-positive vesicles around the distal appendages. Our results uncover a novel fusion machinery, comprising EFA6A, Arf6 and Arl13B, that controls the coordinated fusion of ciliary vesicles docked at the distal appendages of the mother centriole.


Assuntos
Fatores de Ribosilação do ADP , Centríolos , Cílios , Fatores de Troca do Nucleotídeo Guanina , Animais , Linhagem Celular , Vesículas Citoplasmáticas
8.
Arch Toxicol ; 95(3): 1023-1037, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33426622

RESUMO

Uranium is widely spread in the environment due to its natural and anthropogenic occurrences, hence the importance of understanding its impact on human health. The skeleton is the main site of long-term accumulation of this actinide. However, interactions of this metal with biological processes involving the mineralized extracellular matrix and bone cells are still poorly understood. To get a better insight into these interactions, we developed new biomimetic bone matrices containing low doses of natural uranium (up to 0.85 µg of uranium per cm2). These models were characterized by spectroscopic and microscopic approaches before being used as a support for the culture and differentiation of pre-osteoclastic cells. In doing so, we demonstrate that uranium can exert opposite effects on osteoclast resorption depending on its concentration in the bone microenvironment. Our results also provide evidence for the first time that resorption contributes to the remobilization of bone matrix-bound uranium. In agreement with this, we identified, by HRTEM, uranium phosphate internalized in vesicles of resorbing osteoclasts. Thanks to the biomimetic matrices we developed, this study highlights the complex mutual effects between osteoclasts and uranium. This demonstrates the relevance of these 3D models to further study the cellular mechanisms at play in response to uranium storage in bone tissue, and thus better understand the impact of environmental exposure to uranium on human bone health.


Assuntos
Matriz Óssea/efeitos dos fármacos , Modelos Biológicos , Osteoclastos/efeitos dos fármacos , Urânio/metabolismo , Animais , Biomimética , Matriz Óssea/metabolismo , Reabsorção Óssea/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Osteoclastos/metabolismo , Células RAW 264.7 , Distribuição Tecidual , Urânio/administração & dosagem
9.
Acta Neuropathol ; 141(1): 39-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33079262

RESUMO

Several lines of recent evidence indicate that the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) could correspond to an etiological trigger of Alzheimer's disease (AD) pathology. Altered mitochondrial homeostasis is considered an early event in AD development. However, the specific contribution of APP-CTFs to mitochondrial structure, function, and mitophagy defects remains to be established. Here, we demonstrate in neuroblastoma SH-SY5Y cells expressing either APP Swedish mutations, or the ß-secretase-derived APP-CTF fragment (C99) combined with ß- and γ-secretase inhibition, that APP-CTFs accumulation independently of Aß triggers excessive mitochondrial morphology alteration (i.e., size alteration and cristae disorganization) associated with enhanced mitochondrial reactive oxygen species production. APP-CTFs accumulation also elicit basal mitophagy failure illustrated by enhanced conversion of LC3, accumulation of LC3-I and/or LC3-II, non-degradation of SQSTM1/p62, inconsistent Parkin and PINK1 recruitment to mitochondria, enhanced levels of membrane and matrix mitochondrial proteins, and deficient fusion of mitochondria with lysosomes. We confirm the contribution of APP-CTFs accumulation to morphological mitochondria alteration and impaired basal mitophagy in vivo in young 3xTgAD transgenic mice treated with γ-secretase inhibitor as well as in adeno-associated-virus-C99 injected mice. Comparison of aged 2xTgAD and 3xTgAD mice indicates that, besides APP-CTFs, an additional contribution of Aß to late-stage mitophagy activation occurs. Importantly, we report on mitochondrial accumulation of APP-CTFs in human post-mortem sporadic AD brains correlating with mitophagy failure molecular signature. Since defective mitochondria homeostasis plays a pivotal role in AD pathogenesis, targeting mitochondrial dysfunctions and/or mitophagy by counteracting early APP-CTFs accumulation may represent relevant therapeutic interventions in AD.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patologia , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Mitofagia/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Autopsia , Linhagem Celular , Feminino , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Cancers (Basel) ; 12(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297525

RESUMO

Cancer stem cells (CSCs) represent a minor population of cancer cells with stem cell-like properties which are able to fuel tumor growth and resist conventional treatments. Autophagy has been described to be upregulated in some CSCs and to play a crucial role by maintaining stem features and promoting resistance to both hostile microenvironments and treatments. Osteosarcoma (OS) is an aggressive bone cancer which mainly affects children and adolescents and autophagy in OS CSCs has been poorly studied. However, this is a very interesting case because autophagy is often deregulated in this cancer. In the present work, we used two OS cell lines showing different autophagy capacities to isolate CSC-enriched populations and to analyze the autophagy in basal and nutrient-deprived conditions. Our results indicate that autophagy is more efficient in CSCs populations compared to the parental cell lines, suggesting that autophagy is a critical process in OS CSCs. We also showed that the antipsychotic drug thioridazine is able to stimulate, and then impair autophagy in both CSC-enriched populations, leading to autosis, a cell death mediated by the Na+/K+ ATPase pump and triggered by dysregulated accumulation of autophagosomes. Taken together, our results indicate that autophagy is very active in OS CSCs and that targeting this pathway to switch their fate from survival to death could provide a novel strategy to eradicate these cells in osteosarcoma.

11.
Microorganisms ; 8(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825358

RESUMO

Macrophage Migration Inhibitory Factors (MIF) are pivotal cytokines/chemokines for vertebrate immune systems. MIFs are typically soluble single-domain proteins that are conserved across plant, fungal, protist, and metazoan kingdoms, but their functions have not been determined in most phylogenetic groups. Here, we describe an atypical multidomain MIF protein. The marine dinoflagellate Lingulodinium polyedra produces a transmembrane protein with an extra-cytoplasmic MIF domain, which localizes to cell-wall-associated membranes and vesicular bodies. This protein is also present in the membranes of extracellular vesicles accumulating at the secretory pores of the cells. Upon exposure to biotic stress, L. polyedra exhibits reduced expression of the MIF gene and reduced abundance of the surface-associated protein. The presence of LpMIF in the membranes of secreted extracellular vesicles evokes the fascinating possibility that LpMIF may participate in intercellular communication and/or interactions between free-living organisms in multispecies planktonic communities.

12.
Microorganisms ; 8(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645882

RESUMO

Most pathogenic oomycetes of the genus Phytophthora spread in water films as flagellated zoospores. Zoospores perceive and produce signals attracting other zoospores, resulting in autoaggregation in vitro or biofilm formation on plant surface. The mechanisms underlying intercellular communication and consequent attraction, adhesion and aggregation are largely unknown. In Phytophthora parasitica, the perception of a K+ gradient induces coordinated motion and aggregation. To define cellular and molecular events associated with oomycete aggregation, we combined transcriptomic and ultrastructural analyses. Results indicate involvement of electroception in K+ sensing. They establish that the transcriptome repertoire required for swimming and aggregation is already fully functional at zoospore release. At the time points analyzed, aggregates are mainly constituted of zoospores. They produce vesicular and fibrillary material discharged at cell-to-cell contacts. Consistently, the signature of transcriptome dynamics during transition to aggregates is an upregulation of genes potentially related to vesicular trafficking. Moreover, transcriptomic and functional analyses show a strong enhancement of carbonic anhydrase activity, indicating that pH homeostasis may contribute to aggregation by acting on both zoospore movement and adhesion. This study poses the molecular and cellular bases of aggregative behavior within oomycetes and expands the current knowledge of ion perception-mediated dissemination of propagules in the rhizosphere.

13.
J Exp Bot ; 70(20): 5943-5958, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31365744

RESUMO

Plant-parasitic nematodes secrete numerous effectors to facilitate parasitism, but detailed functions of nematode effectors and their plant targets remain largely unknown. Here, we characterized four macrophage migration inhibitory factors (MIFs) in Meloidogyne incognita resembling the MIFs secreted by human and animal parasites. Transcriptional data showed MiMIFs are up-regulated in parasitism. Immunolocalization provided evidence that MiMIF proteins are secreted from the nematode hypodermis to the parasite surface, detected in plant tissues and giant cells. In planta MiMIFs RNA interference in Arabidopsis decreased infection and nematode reproduction. Transient expression of MiMIF-2 could suppress Bax- and RBP1/Gpa2-induced cell death. MiMIF-2 ectopic expression led to higher levels of Arabidopsis susceptibility, suppressed immune responses triggered by flg22, and impaired [Ca2+]cyt influx induced by H2O2. The immunoprecipitation of MiMIF-2-interacting proteins, followed by co-immunoprecipitation and bimolecular fluorescence complementation validations, revealed specific interactions between MiMIF-2 and two Arabidopsis annexins, AnnAt1 and AnnAt4, involved in the transport of calcium ions, stress responses, and signal transduction. Suppression of expression or overexpression of these annexins modified nematode infection. Our results provide functional evidence that nematode effectors secreted from hypodermis to the parasite cuticle surface target host proteins and M. incognita uses MiMIFs to promote parasitism by interfering with the annexin-mediated plant immune responses.


Assuntos
Anexinas/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Imunidade Vegetal/fisiologia , Tylenchoidea/metabolismo , Tylenchoidea/parasitologia , Animais , Fatores Inibidores da Migração de Macrófagos/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Tylenchoidea/genética
14.
Environ Sci Technol ; 53(14): 7974-7983, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31187628

RESUMO

Uranium speciation and bioaccumulation were investigated in the sea urchin Paracentrotus lividus. Through accumulation experiments in a well-controlled aquarium followed by ICP-OES analysis, the quantification of uranium in the different compartments of the sea urchin was performed. Uranium is mainly distributed in the test (skeletal components), as it is the major constituent of the sea urchin, but in terms of quantity of uranium per gram of compartment, the following rating: intestinal tract > gonads ≫ test, was obtained. Combining both extended X-ray Absorption Spectroscopy and time-resolved laser-induced fluorescence spectroscopic analysis, it was possible to identify two different forms of uranium in the sea urchin, one in the test, as a carbonato-calcium complex, and the second one in the gonads and intestinal tract, as a protein complex. Toposome is a major calcium-binding transferrin-like protein contained within the sea urchin. EXAFS data fitting of both contaminated organs in vivo and the uranium-toposome complex from protein purified out of the gonads revealed that it is suspected to complex uranium in gonads and intestinal tract. This hypothesis is also supported by the results from two imaging techniques, i.e., Transmission Electron Microscopy and Scanning Transmission X-ray Microscopy. This thorough investigation of uranium uptake in sea urchin is one of the few attempts to assess the speciation in a living marine organism in vivo.


Assuntos
Paracentrotus , Urânio , Animais , Gônadas
15.
Nat Commun ; 10(1): 2024, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048699

RESUMO

Mutations in the polycystins cause autosomal dominant polycystic kidney disease (ADPKD). Here we show that transmembrane protein 33 (TMEM33) interacts with the ion channel polycystin-2 (PC2) at the endoplasmic reticulum (ER) membrane, enhancing its opening over the whole physiological calcium range in ER liposomes fused to planar bilayers. Consequently, TMEM33 reduces intracellular calcium content in a PC2-dependent manner, impairs lysosomal calcium refilling, causes cathepsins translocation, inhibition of autophagic flux upon ER stress, as well as sensitization to apoptosis. Invalidation of TMEM33 in the mouse exerts a potent protection against renal ER stress. By contrast, TMEM33 does not influence pkd2-dependent renal cystogenesis in the zebrafish. Together, our results identify a key role for TMEM33 in the regulation of intracellular calcium homeostasis of renal proximal convoluted tubule cells and establish a causal link between TMEM33 and acute kidney injury.


Assuntos
Injúria Renal Aguda/patologia , Cálcio/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/metabolismo , Canais de Cátion TRPP/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Injúria Renal Aguda/genética , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Túbulos Renais Proximais/citologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , RNA Interferente Pequeno/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
16.
Toxicol Sci ; 170(1): 199-209, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31120128

RESUMO

Once absorbed in the body, natural uranium [U(VI)], a radionucleotide naturally present in the environment, is targeted to the skeleton which is the long-term storage organ. We and others have reported the U(VI) negative effects on osteoblasts (OB) and osteoclasts (OC), the main two cell types involved in bone remodeling. In the present work, we addressed the U(VI) effect on osteocytes (OST), the longest living bone cell type and the more numerous (> 90%). These cells, which are embedded in bone matrix and thus are the more prone to U(VI) long-term exposure, are now considered as the chief orchestrators of the bone remodeling process. Our results show that the cytotoxicity index of OST is close to 730 µM, which is about twice the one reported for OB and OC. However, despite this resistance potential, we observed that chronic U(VI) exposure as low as 5 µM led to a drastic decrease of the OST mineralization function. Gene expression analysis showed that this impairment could potentially be linked to an altered differentiation process of these cells. We also observed that U(VI) was able to trigger autophagy, a highly conserved survival mechanism. Extended X-ray absorption fine structure analysis at the U LIII edge of OST cells exposed to U(VI) unambiguously shows the formation of an uranyl phosphate phase in which the uranyl local structure is similar to the one present in Autunite. Thus, our results demonstrate for the first time that OST mineralization function can be affected by U(VI) exposure as low as 5 µM, suggesting that prolonged exposure could alter the central role of these cells in the bone environment.


Assuntos
Autofagia/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Osteócitos/efeitos dos fármacos , Urânio/toxicidade , Animais , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/genética , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Osteócitos/metabolismo , Osteócitos/ultraestrutura
17.
Evodevo ; 10: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984365

RESUMO

BACKGROUND: In tunicates, the capacity to build an adult body via non-embryonic development (NED), i.e., asexual budding and whole body regeneration, has been gained or lost several times across the whole subphylum. A recent phylogeny of the family Styelidae revealed an independent acquisition of NED in the colonial species Polyandrocarpa zorritensis and highlighted a novel budding mode. In this paper, we provide the first detailed characterization of the asexual life cycle of P. zorritensis. RESULTS: Bud formation occurs along a tubular protrusion of the adult epidermis, the stolon, in a vascularized area defined as budding nest. The bud arises through a folding of the epithelia of the stolon with the contribution of undifferentiated mesenchymal cells. This previously unreported mode of bud onset leads to the formation of a double vesicle, which starts to develop into a zooid through morphogenetic mechanisms common to other Styelidae. The budding nest can also continue to accumulate nutrients and develop into a round-shaped structure, designated as spherule, which represents a dormant form able to survive low temperatures. CONCLUSIONS: To understand the mechanisms of NED and their evolution, it is fundamental to start from a robust phylogenetic framework in order to select relevant species to compare. The anatomical description of P. zorritensis NED provides the foundation for future comparative studies on plasticity of budding and regeneration in tunicates.

18.
Oncogene ; 38(8): 1282-1295, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30254208

RESUMO

Phenotypic plasticity and subsequent generation of intratumoral heterogeneity underly key traits in malignant melanoma such as drug resistance and metastasis. Melanoma plasticity promotes a switch between proliferative and invasive phenotypes characterized by different transcriptional programs of which MITF is a critical regulator. Here, we show that the acid ceramidase ASAH1, which controls sphingolipid metabolism, acted as a rheostat of the phenotypic switch in melanoma cells. Low ASAH1 expression was associated with an invasive behavior mediated by activation of the integrin alphavbeta5-FAK signaling cascade. In line with that, human melanoma biopsies revealed heterogeneous staining of ASAH1 and low ASAH1 expression at the melanoma invasive front. We also identified ASAH1 as a new target of MITF, thereby involving MITF in the regulation of sphingolipid metabolism. Together, our findings provide new cues to the mechanisms underlying the phenotypic plasticity of melanoma cells and identify new anti-metastatic targets.


Assuntos
Ceramidase Ácida/genética , Proliferação de Células/genética , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Linhagem Celular Tumoral , Feminino , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/patologia , Invasividade Neoplásica/genética , Proteínas Proto-Oncogênicas B-raf , Receptores de Vitronectina/genética , Transdução de Sinais
19.
Dalton Trans ; 47(33): 11605-11618, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30090882

RESUMO

Since the 1940s, great amounts of Plutonium (Pu) have been produced for both military and civil purposes. Until now, the standard therapy for decorporation following inhalation has been the intravenous injection of diethylenetriaminepentaacetic acid ligand (Ca-DTPA form). This method offers a strong complexing constant for Pu(iv) but has poor chemical specificity, therefore its efficacy is limited to actinides present in the blood. Consequently, there is no decorporation treatment currently available which efficiently removes the intracellular Pu(iv) trapped in the pulmonary macrophages. Our research shows that a nanoparticle approach could be of particular interest due to large contact area and ability to target the retention compartments of the lungs. In this study, we have focused on the inhalation process involving forms of Pu(iv) with poor solubility. We explored the design of biocompatible nanoparticles able to target the macrophages in the lung alveoli and to chelate the forms of Pu(iv) with poor solubility. Nanoparticle formation was achieved through an ionic cross-linking concept using a polycationic polymer and an anionic chelate linker. We chose N-trimethyl chitosan, for its biocompatibility, as the polycationic polymer base of the nanoparticle and the phosphonic analogue of DTPA, diethylenetriamine-pentamethylenephosphonic acid (DTPMP) as the anionic chelating linker in forming NPs TMC-DTPMP. The synthesis and physico-chemical characterization of these NPs are presented. Secondly, the complexation mechanisms of TMC-DTPMP NPs with Thorium (Th(iv)) are discussed in terms of efficiency and structure. The Extended X-Ray Absorption Fine Structure (EXAFS) of the TMC-DTPMP complex with Th(iv) as well as Pu(iv) are defined and completed with DFT calculations to further delineate the plutonium coordination sphere after complexation. Finally, preliminary cytotoxicity tests onto macrophages were assayed.

20.
Nat Commun ; 9(1): 1332, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626194

RESUMO

How proteins are targeted to lipid droplets (LDs) and distinguish the LD surface from the surfaces of other organelles is poorly understood, but many contain predicted amphipathic helices (AHs) that are involved in targeting. We have focused on human perilipin 4 (Plin4), which contains an AH that is exceptional in terms of length and repetitiveness. Using model cellular systems, we show that AH length, hydrophobicity, and charge are important for AH targeting to LDs and that these properties can compensate for one another, albeit at a loss of targeting specificity. Using synthetic lipids, we show that purified Plin4 AH binds poorly to lipid bilayers but strongly interacts with pure triglycerides, acting as a coat and forming small oil droplets. Because Plin4 overexpression alleviates LD instability under conditions where their coverage by phospholipids is limiting, we propose that the Plin4 AH replaces the LD lipid monolayer, for example during LD growth.


Assuntos
Gotículas Lipídicas/metabolismo , Perilipina-4/química , Perilipina-4/metabolismo , Animais , Linhagem Celular , Drosophila , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Gotículas Lipídicas/química , Modelos Moleculares , Perilipina-4/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA