Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104715, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061002

RESUMO

Trypanosomatids are a diverse group of uniflagellate protozoan parasites that include globally relevant pathogens such as Trypanosoma cruzi, the causative agent of Chagas disease. Trypanosomes lack the fatty acid synthase system typically used for de novo fatty acid (FA) synthesis in other eukaryotes. Instead, these microbes have evolved a modular FA elongase (ELO) system comprised of individual ELO enzymes (ELO1-4) that can operate processively to generate long chain- and very long chain-FAs. The importance of ELO's for maintaining lipid homeostasis in trypanosomatids is currently unclear, given their ability to take up and utilize exogenous FAs for lipid synthesis. To assess ELO function in T. cruzi, we generated individual KO lines, Δelo1, Δelo2, and Δelo3, in which the genes encoding ELO1-3 were functionally disrupted in the parasite insect stage (epimastigote). Using unbiased lipidomic and metabolomic analyses, in combination with metabolic tracing and biochemical approaches, we demonstrate that ELO2 and ELO3 are required for global lipid homeostasis, whereas ELO1 is dispensable for this function. Instead, ELO1 activity is needed to sustain mitochondrial activity and normal growth in T. cruzi epimastigotes. The cross-talk between microsomal ELO1 and the mitochondrion is a novel finding that, we propose, merits further examination of the trypanosomatid ELO pathway as critical for central metabolism.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Elongases de Ácidos Graxos/metabolismo , Doença de Chagas/genética , Doença de Chagas/metabolismo , Homeostase , Mitocôndrias/genética , Mitocôndrias/metabolismo , Lipídeos
2.
Future Sci OA ; 6(10): FSO589, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33312693

RESUMO

AIM: To characterize, by means of univariate and multivariate approaches, the T helper (Th)-1 and Th-2 responses during the different phases of tumor immunoediting. MATERIALS & METHODS: We used a multivariate principal component analysis applied to analyze the joint behavior of serum concentrations of IFN-γ, IL-2, IL-10 and IL-4, during the different phases of tumor immunoediting, in CBi/L mice challenged with M-406 mammary adenocarcinoma. RESULTS & CONCLUSION: Animals in equilibrium phase showed the widest variations in values of the four cytokines. In this experimental model, the role of IFN-γ would be related to tumor growth and progression, while IL-10 would participate in the antitumor immune response.

3.
Front Chem ; 8: 696, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195007

RESUMO

L-Proline is an important amino acid for the pathogenic protists belonging to Trypanosoma and Leishmania genera. In Trypanosoma cruzi, the etiological agent of Chagas disease, this amino acid is involved in fundamental biological processes such as ATP production, differentiation of the insect and intracellular stages, the host cell infection and the resistance to a variety of stresses. In this study, we explore the L-Proline uptake as a chemotherapeutic target for T. cruzi. Novel inhibitors have been proposed containing the amino acid with a linker and a variable region able to block the transporter. A series of sixteen 1,2,3-triazolyl-proline derivatives have been prepared for in vitro screening against T. cruzi epimastigotes and proline uptake assays. We successfully obtained inhibitors that interfere with the amino acid internalization, which validated our design targeting the metabolite's transport. The presented structures are one of few examples of amino acid transporter inhibitors. The unprecedent application of this strategy on the development of new chemotherapy against Chagas disease, opens a new horizon on antiparasitic drug development against parasitic diseases and other pathologies.

4.
J Biol Chem ; 295(38): 13202-13212, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32709751

RESUMO

Heme is an essential cofactor for many biological processes in aerobic organisms, which can synthesize it de novo through a conserved pathway. Trypanosoma cruzi, the etiological agent of Chagas disease, as well as other trypanosomatids relevant to human health, are heme auxotrophs, meaning they must import it from their mammalian hosts or insect vectors. However, how these species import and regulate heme levels is not fully defined yet. It is known that the membrane protein TcHTE is involved in T. cruzi heme transport, although its specific role remains unclear. In the present work, we studied endogenous TcHTE in the different life cycle stages of the parasite to gain insight into its function in heme transport and homeostasis. We have confirmed that TcHTE is predominantly detected in replicative stages (epimastigote and amastigote), in which heme transport activity was previously validated. We also showed that in epimastigotes, TcHTE protein and mRNA levels decrease in response to increments in heme concentration, confirming it as a member of the heme response gene family. Finally, we demonstrated that T. cruzi epimastigotes can sense intracellular heme by an unknown mechanism and regulate heme transport to adapt to changing conditions. Based on these results, we propose a model in which T. cruzi senses intracellular heme and regulates heme transport activity by adjusting the expression of TcHTE. The elucidation and characterization of heme transport and homeostasis will contribute to a better understanding of a critical pathway for T. cruzi biology allowing the identification of novel and essential proteins.


Assuntos
Heme/metabolismo , Homeostase , Modelos Biológicos , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Doença de Chagas/genética , Doença de Chagas/metabolismo , Heme/genética , Humanos , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética
5.
PLoS Negl Trop Dis ; 10(1): e0004359, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26752206

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite's replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE) with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport), which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.


Assuntos
Proteínas de Transporte/metabolismo , Heme/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Proteínas de Transporte/genética , Chlorocebus aethiops , Clonagem Molecular , Regulação da Expressão Gênica , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Células Vero
6.
J Biomed Sci ; 21: 52, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24885995

RESUMO

BACKGROUND: Cancer immunoediting is a dynamic process composed of three phases: elimination (EL), equilibrium (EQ) and escape (ES) that encompasses the potential host-protective and tumor-sculpting functions of the immune system throughout tumor development. Animal models are useful tools for studying diseases such as cancer. The present study was designed to characterize the interaction between mammary adenocarcinoma M-406 and CBi, CBi- and CBi/L inbred mice lines. RESULTS: The mammary adenocarcinoma M-406 developed spontaneously in a CBi mouse. CBi/L and CBi- mice were artificially selected for body conformation from CBi. When CBi mice are s.c. challenged with M-406, tumor growths exponentially in 100% of animals, while in CBi- the tumor growths briefly and then begins a rejection process in 100% of the animals. In CBi/L the growth of the tumor shows the three phases: 51.6% in ES, 18.5% in EQ and 29.8% in EL. CONCLUSIONS: The results obtained support the conclusion that the system M-406 plus the inbred mouse lines CBi, CBi- and CBi/L, is a good murine model to study the process of tumor immunoediting.


Assuntos
Adenocarcinoma , Neoplasias Mamárias Experimentais , Modelos Biológicos , Animais , Linhagem Celular Tumoral , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA