Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067418

RESUMO

Anti-oxidant, -inflammatory, and -carcinogenic activities of bioactive plant constituents, such as anthocyanins, have been widely discussed in literature. However, the potential interaction of anthocyanin-rich extracts with routinely used chemotherapeutics is still not fully elucidated. In the present study, anthocyanin-rich polyphenol extracts of blackberry (BB), bilberry (Bil), black currant (BC), elderberry (EB), and their respective main anthocyanins (cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-sambubioside) were investigated concerning their cytotoxic and DNA-damaging properties in murine CT26 cells either alone or in combination with the chemotherapeutic agent SN-38. BB exerted potent cytotoxic effects, while Bil, BC, and EB only had marginal effects on cell viability. Single anthocyanins comprised of the extracts could not induce comparable effects. Even though the BB extract further pronounced SN-38-induced cytotoxicity and inhibited cell adhesion at 100-200 µg/mL, no effect on DNA damage was observed. In conclusion, anti-carcinogenic properties of the extracts on CT26 cells could be ranked BB >> BC ≥ Bil ≈ EB. Mechanisms underlying the potent cytotoxic effects are still to be elucidated since the induction of DNA damage does not play a role.


Assuntos
Antocianinas , Neoplasias do Colo , Camundongos , Animais , Antocianinas/farmacologia , Frutas , Irinotecano , Extratos Vegetais/farmacologia , Neoplasias do Colo/tratamento farmacológico , Glucosídeos/farmacologia
2.
Front Toxicol ; 4: 977147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353200

RESUMO

Mycotoxins produced by Alternaria spp. act genotoxic in cell-based studies, but data on their toxicity in vivo is scarce and urgently required for risk assessment. Thus, male Sprague-Dawley rats received single doses of a complex Alternaria toxin extract (CE; 50 mg/kg bw), altertoxin II (ATX-II; 0.21 mg/kg bw) or vehicle by gavage, one of the most genotoxic metabolites in vitro and were sacrificed after 3 or 24 h, respectively. Using SDS-PAGE/Western Blot, a significant increase of histone 2a.X phosphorylation and depletion of the native protein was observed for rats that were exposed to ATX-II for 24 h. Applying RT-PCR array technology we identified genes of interest for qRT-PCR testing, which in turn confirmed an induction of Rnf8 transcription in the colon of rats treated with ATX-II for 3 h and CE for 24 h. A decrease of Cdkn1a transcription was observed in rats exposed to ATX-II for 24 h, possibly indicating tissue repair after chemical injury. In contrast to the observed response in the colon, no markers for genotoxicity were induced in the liver of treated animals. We hereby provide the first report of ATX-II as a genotoxicant in vivo. Deviating results for similar concentrations of ATX-II in a natural Alternaria toxin mixture argue for substantial mixture effects.

3.
Chem Res Toxicol ; 35(5): 731-749, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35405071

RESUMO

After ingestion of food commodities, the gastrointestinal tract (GIT) poses the first barrier against xenobiotics and pathogens. Therefore, it is regularly confronted with external stressors potentially affecting the inflammatory response and the epithelial barrier. Alternaria mycotoxins such as alternariol (AOH) and altertoxin II (ATX-II) are frequently occurring food and feed contaminants that are described for their immunomodulatory capacities. Hence, this study aimed at exploring the effect of AOH and ATX-II as single compounds or binary mixtures on the immune response and epithelial homeostasis in noncancerous colon epithelial cells HCEC-1CT. Both toxins suppressed mRNA levels of proinflammatory mediators interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), and secretion of IL-8, as well as mRNA levels of the matrix metallopeptidase 2 (MMP-2). Binary combinations of AOH and ATX-II reduced the response of the single toxins. Additionally, AOH and ATX-II modified immunolocalization of transmembrane proteins such as integrin ß1, zona occludens 1 (ZO-1), claudin 4 (Cldn 4), and occludin (Ocln), which support colonic tissue homeostasis and intestinal barrier function. Moreover, the cellular distribution of ZO-1 was affected by ATX-II. Mechanistically, these effects could be traced back to the involvement of several transcription factors. AOH activated the nuclear translocation of the aryl hydrocarbon receptor (AhR) and the nuclear factor erythroid 2-related factor 2 (Nrf2), governing cell metabolic competence and structural integrity. This was accompanied by altered distribution of the NF-κB p65 protein, an important regulator of inflammatory response. ATX-II also induced AhR and Nrf2 translocation, albeit failing to substantiate the effect of AOH on the colonic epithelium. Hence, both toxins coherently repress the intestinal immune response on the cytokine transcriptional and protein levels. Furthermore, both mycotoxins affected the colonic epithelial integrity by altering the cell architecture.


Assuntos
Alternaria , Micotoxinas , Alternaria/química , Alternaria/metabolismo , Colo , Células Epiteliais/metabolismo , Imunidade , Interleucina-8/metabolismo , Lactonas/metabolismo , Micotoxinas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
4.
Toxins (Basel) ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35202179

RESUMO

Food contaminants of bacterial or fungal origin frequently contaminate staple foods to various extents. Among others, the bacterial toxin cereulide (CER) and the mycotoxin deoxynivalenol (DON) co-occur in a mixed diet and are absorbed by the human body. Both toxins exert dis-tinctive mitotoxic potential. As damaged mitochondria are removed via autophagy, mitochondrial and lysosomal toxicity were assessed by applying low doses of single and combined toxins (CER 0.1-50 ng/mL; DON 0.01-5 µg/mL) to HepG2 liver cells. In addition to cytotoxicity assays, RT-qPCR was performed to investigate genes involved in lysosomal biogenesis and autophagy. CER and DON caused significant cytotoxicity on HepG2 cells after 5 and 24 h over a broad concentration range. CER, alone and in combination with DON, increased the transcription of the autophagy related genes coding for the microtubule associated protein 1A/1B light chain 3 (LC3) and sequestome 1 (SQSTM1) as well as LC3 protein expression which was determined using immunocytochemistry. DON increased LC3 protein expression without induction of gene transcription, hence it seems plausible that CER and DON act on different pathways. The results support the hypothesis that CER induces autophagy via the LC3 pathway and damaged mitochondria are therefore eliminated.


Assuntos
Toxinas Bacterianas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/toxicidade , Células Hep G2/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Micotoxinas/toxicidade , Tricotecenos/toxicidade , Contaminação de Alimentos , Humanos
5.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638824

RESUMO

An anthocyanin-rich diet is considered to protect against chronic inflammatory processes although the bioavailability of anthocyanins is regarded as rather low. Moreover, the immunomodulatory role of anthocyanins is not fully understood yet. In the present study, fractions of blackberry (Rubus fruticosus) juice were investigated in plasma-relevant concentrations with respect to their immunomodulatory properties in lipopolysaccharide (LPS)-challenged THP-1-derived macrophages. The complex blackberry extract acted ineffective as well as potential degradation products. Cyanidin-3O-glucoside (Cy3glc), the main constituent of blackberry anthocyanins, diminished TNF-α levels at a concentration of 0.02 µg/mL, indicating protective effects as measured with quantitative RT-PCR and multiplex cytokine assays. LPS-boosted activity of transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) of differentiated THP-1 reporter gene cells was marginally inhibited by Cy3glc. LPS-induced microRNA-155 was further increased, supporting the evidence of protection. Of note, fractions obtained from blackberry juice, in particular cyanidin-3O-(6″-dioxalylglucoside), were displaying potential pro-inflammatory properties as these elevated IL-6 and TNF-α levels. In conclusion, highly purified anthocyanin fractions of blackberry juice display both anti- and pro-inflammatory properties at plasma-relevant concentrations depending on their structure and substitution pattern.


Assuntos
Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Macrófagos/metabolismo , Rubus/química , Antocianinas/química , Anti-Inflamatórios/química , Humanos , Interleucina-6/biossíntese , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/biossíntese
6.
Mol Nutr Food Res ; 65(17): e2100229, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34212508

RESUMO

SCOPE: Glycosylation is a way to increase structure-stability of anthocyanins, yet compromises their bioactivity. The study investigates the antioxidant activity of purified cyanidin (Cy)-based anthocyanins and respective degradation products in Caco-2 clone C2BBe1 aiming to identify structure-activity relationships. RESULTS AND METHODS: Cyanidin 3-O-glucoside (Cy-3-glc) and cyanidin 3-O-sambubioside (Cy-3-sam) proved to be most potent regarding antioxidant properties and protection against hydrogen peroxide (H2 O2 )-induced reactive oxygen species (ROS)-levels measured with the dichloro-fluorescein (DCF) assay. Cyanidin 3-O-sambubioside-5-O-glucoside (Cy-3-sam-5-glc) and cyanidin 3-O-rutinoside (Cy-3-rut) were less efficient and not protective, reflecting potential differences in uptake and/or degradation. Following ranking in antioxidant efficiency is suggested: (concentrations ≤10 × 10-6  M) Cy-3-glc ≥ Cy-3-sam > Cy-3-sam-5-glc ≈ Cy-3-rut ≈ Cy; (concentrations ≥50 × 10-6  M) Cy-3-glc ≈ Cy-3-sam ≥ Cy > Cy-3-sam-5-glc ≈ Cy-3-rut. Cy and protocatechuic acid (PCA) reduced ROS-levels as potent as the mono- and di-glycoside, whereas phloroglucinol aldehyde (PGA) displayed pro-oxidant properties. None of the degradation products protected from oxidative stress. Gene transcription analysis of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPx), heme-oxygenase-1 (HO-1), and glutamate-cysteine-ligase (γGCL) suggest no activation of nuclear factor erythroid 2-related factor 2 (Nrf2). CONCLUSION: More complex residues and numbers of sugar moieties appear to be counterproductive for antioxidant activity. Other mechanisms than Nrf2-activation should be considered for protective effects.


Assuntos
Antocianinas/química , Antocianinas/farmacologia , Antioxidantes/farmacologia , Sambucus/química , Relação Estrutura-Atividade , Antocianinas/análise , Antioxidantes/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Enzimas/genética , Enzimas/metabolismo , Sucos de Frutas e Vegetais/análise , Humanos , Estresse Oxidativo/efeitos dos fármacos
7.
BMC Chem ; 14(1): 39, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32514500

RESUMO

Recently, we demonstrated that the consumption of a bolus of bilberry extract modulates the transcription of Nrf2-regulated genes in peripheral blood lymphocytes (PBL) of healthy volunteers, accompanied by decreased DNA-damage. In the present study, we addressed the question whether consumption of consumer-relevant amounts of anthocyanin-rich beverages can achieve similar effects. The impact of three different anthocyanin-rich beverages on Nrf2-dependent gene transcription as well as and the status of DNA-damage in whole blood was investigated. After a polyphenol-reduced diet, five healthy male subjects consumed a bolus (700 mL) of respective test beverages with blood sampling up to 8 h after intake. All beverages affected the transcription of Nrf2, HO-1 and NQO-1, but showed different potencies and persistence of effects. Consumption of red fruit juice significantly reduced total DNA strand breaks (with formamidopyrimidine-DNA-glycosylase-(fpg) treatment) after 8 h in blood samples of the volunteers, suggesting antioxidant and DNA protective effects, albeit transcript levels of Nrf2-dependent genes had reached the basal state. The amount of basic DNA strand breaks (damage without oxidative DNA strand breaks) remained unchanged during the monitoring period. In contrast, a beverage prepared from grape skin extract significantly increased basic and total DNA strand breaks 2 h after intake, underlining the necessity of further investigations regarding composition, safety and consumer´s acceptance of respective products to exclude undesired adverse effects. Consumption of a bolus of anthocyanin-rich beverages affected Nrf2 and Nrf2-dependent gene transcription in human PBL and DNA integrity, which is indicative for systemic effects.

8.
Arch Toxicol ; 94(3): 833-844, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32065293

RESUMO

Deoxynivalenol (DON), one of the most abundant mycotoxins in cereal products, was recently detected with other mycotoxins and the emetic bacterial toxin cereulide (CER) in maize porridge. Within a cereal-based diet, co-exposure to these toxins is likely, hence raising the question of combinatory toxicological effects. While the toxicological evaluation of DON has quite progressed, consequences of chronic, low-dose CER exposure are still insufficiently explored. Information about the combinatory toxicological effects of these toxins is lacking. In the present study, we investigated how CER (0.1-100 ng/mL) and DON (0.01-10 µg/mL) alone and in a constant ratio of 1:100 (CER:DON) affect the cytotoxicity and immune response of differentiated human intestinal Caco-2 cells. While DON alone reduced cell viability only in the highest concentration (10 µg/mL), CER caused severe cytotoxicity upon prolonged incubation (starting from 10 ng/mL after 24 h and 48 h, 2.5 ng/mL and higher after 72 h). After 72 h, synergistic effects were observed at 2.5 ng/mL CER and 0.25 µg/mL DON. Different endpoints of inflammation were investigated in interleukin-1ß-stimulated Caco-2 cells. Notably, DON-induced interleukin-8 transcription and secretion were diminished by the presence of 10 and 25 ng/mL CER after short-term (5 h) incubation, indicating immunosuppressive properties. We hypothesise that habitual consumption of cereal-based foods co-contaminated with CER and DON may cause synergistic cytotoxic effects and an altered immune response in the human intestine. Therefore, further research concerning effects of co-occurring bacterial toxins and mycotoxins on the impairment of intestinal barrier integrity, intestinal inflammation and the promotion of malnutrition is needed.


Assuntos
Células CACO-2 , Depsipeptídeos/farmacologia , Micotoxinas/farmacologia , Tricotecenos/farmacologia , Sobrevivência Celular , Dieta , Eméticos , Contaminação de Alimentos , Humanos , Inflamação , Interleucina-1beta , Interleucina-8 , Mucosa Intestinal , Intestinos
9.
Antioxidants (Basel) ; 10(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383921

RESUMO

Polyphenols are considered protective against diseases associated with oxidative stress. Short-term intake of an anthocyanin-rich fruit juice resulted in significantly reduced deoxyribonucleic acid (DNA) strand-breaks in peripheral blood lymphocytes (PBLs) and affected antioxidant markers in healthy volunteers. Consequently, effects of long-term consumption of fruit juice are of particular interest. In focus was the impact on nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), the Nrf2-regulated genes NAD(P)H quinone oxidoreductase 1 (NQO-1) and heme oxygenase 1 (HO-1) as well as effects on the gut microbiota. In a nine-week placebo-controlled intervention trial with 57 healthy male volunteers, consumption of anthocyanin-rich juice significantly increased NQO-1 and HO-1 transcript levels in PBLs compared to a placebo beverage as measured by real-time polymerase chain reaction (PCR). Three Nrf2-promotor single nucleotide polymorphisms (SNPs), analyzed by pyrosequencing, indicated an association between individual Nrf2 transcript levels and genotype. Moreover, the Nrf2 genotype appeared to correlate with the presence of specific microbial organisms identified by 16S-PCR and classified as Spirochaetaceae. Furthermore, the microbial community was significantly affected by the duration of juice consumption and intake of juice itself. Taken together, long-term consumption of anthocyanin-rich fruit juice affected Nrf2-dependent transcription in PBLs, indicating systemic effects. Individual Nrf2 genotypes may influence the antioxidant response, thus requiring consideration in future intervention studies focusing on the Nrf2 pathway. Anthocyanin-rich fruit juice had an extensive impact on the gut microbiota.

10.
Arch Toxicol ; 93(11): 3153-3167, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31641809

RESUMO

Despite the frequent infection of agricultural crops by Alternaria spp., their toxic secondary metabolites and potential food contaminants lack comprehensive metabolic characterization. In this study, we investigated their bioavailability, metabolism, and excretion in vivo. A complex Alternaria culture extract (50 mg/kg body weight) containing 11 known toxins and the isolated lead toxin altertoxin II (0.7 mg/kg body weight) were administered per gavage to groups of 14 Sprague Dawley rats each. After 3 h and 24 h, plasma, urine and feces were collected to determine toxin recoveries. For reliable quantitation, an LC-MS/MS method for the simultaneous detection of 20 Alternaria toxins and metabolites was developed and optimized for either biological matrix. The obtained results demonstrated efficient excretion of alternariol (AOH) and its monomethyl ether (AME) via feces (> 89%) and urine (> 2.6%) after 24 h, while the majority of tenuazonic acid was recovered in urine (20 and 87% after 3 and 24 h, respectively). Moreover, modified forms of AOH and AME were identified in urine and fecal samples confirming both, mammalian phase-I (4-hydroxy-AOH) and phase-II (sulfates) biotransformation in vivo. Despite the comparably high doses, perylene quinones were recovered only at very low levels (altertoxin I, alterperylenol, < 0.06% in urine and plasma, < 5% in feces) or not at all (highly genotoxic, epoxide-holding altertoxin II, stemphyltoxin III). Interestingly, altertoxin I was detected in all matrices of rats receiving altertoxin II and suggests enzymatic de-epoxidation in vivo. In conclusion, the present study contributes valuable information to advance our understanding of the emerging Alternaria mycotoxins and their relevance on food safety.


Assuntos
Alternaria/química , Benzo(a)Antracenos/metabolismo , Micotoxinas/metabolismo , Alternaria/crescimento & desenvolvimento , Animais , Benzo(a)Antracenos/sangue , Benzo(a)Antracenos/isolamento & purificação , Benzo(a)Antracenos/urina , Disponibilidade Biológica , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida , Ingestão de Alimentos/efeitos dos fármacos , Fezes/química , Contaminação de Alimentos/análise , Limite de Detecção , Masculino , Taxa de Depuração Metabólica , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Micotoxinas/sangue , Micotoxinas/isolamento & purificação , Micotoxinas/urina , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Distribuição Tecidual
11.
Toxicol Lett ; 301: 168-178, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30321595

RESUMO

Alternaria mycotoxins frequently contaminate agricultural crops and may impact animal and human health. However, data on mammalian metabolism and potential biomarkers of exposure for human biomonitoring (HBM) are scarce. Here, we report the preliminary investigation with respect to metabolism and excretion of Alternaria toxins in Sprague Dawley rats. Four animals were housed in metabolic cages for 24 h after gavage administration of an Alternaria alternata culture extract containing ten known toxins. LC-MS/MS analysis of 17 Alternaria toxins in urine and fecal samples allowed to gain first insights regarding xenobiotic metabolism and excretion rates. Alternariol (6-10%), alternariol monomethyl ether (AME, 6-7%) and tenuazonic acid (up to 55%) were recovered in urine and fecal samples (9%, 87%, 0.3%, respectively), while perylene quinones administered at comparatively high levels, were either determined at very low levels (up to 0.5% altertoxin I in urine and 15% in feces; 0.2% alterperylenol in urine and 3% in feces) or not at all (altertoxin II, stemphyltoxin III). AME-3-sulfate, which was not present in the administered extract, was determined in urine, representing up to 23% of the AME intake. Critical evaluation of the applied sample preparation protocol and LC-MS/MS analysis revealed interesting preliminary results and information crucial for improving follow-up experiments.


Assuntos
Alternaria , Micotoxinas/metabolismo , Animais , Benzo(a)Antracenos/metabolismo , Benzo(a)Antracenos/urina , Cromatografia Líquida , Fezes/química , Lactonas/metabolismo , Lactonas/urina , Limite de Detecção , Masculino , Micotoxinas/urina , Perileno/análogos & derivados , Perileno/metabolismo , Perileno/urina , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Ácido Tenuazônico/metabolismo , Ácido Tenuazônico/urina
12.
Toxicol Lett ; 295: 424-437, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29990561

RESUMO

The sulfated forms of the Fusarium toxin deoxynivalenol (DON), deoxynivalenol-3-sulfate (DON-3-Sulf) and deoxynivalenol-15-sulfate (DON-15-Sulf) were recently described, however little is known about their mechanism of action in mammalian cells. DON-3-Sulf and DON-15-Sulf were taken up by HT-29 colon carcinoma cells, although to a lesser extent compared to DON. All three compounds were found to enhance the intracellular ROS level in the dichlorofluorescein assay (≥ 1µM), even though substantial differences were observed in their cytotoxic potential. In silico modelling highlighted that DON-sulfates do not share the classical mechanism of action of DON, being unable to fit into the ribosomal pocket and trigger the classical ribotoxic stress response. However, DON-3-Sulf and DON-15-Sulf sustained a distinctive proliferative stimulus in HT-29 and activated autophagy. The mechanisms of action of DON-3-Sulf and DON-15-Sulf suggest a potential interplay between the onset of ribosomal inhibition and autophagy activation as an alternative and/or complementary mode of action for DON and its sulfated analogues.


Assuntos
Colo/efeitos dos fármacos , Tricotecenos/toxicidade , Autofagia/efeitos dos fármacos , Biotransformação , Proliferação de Células/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Ribossomos/patologia , Relação Estrutura-Atividade , Fatores de Tempo , Tricotecenos/química , Tricotecenos/metabolismo
13.
Toxicol Lett ; 284: 170-183, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29248571

RESUMO

Aurofusarin (AURO), a dimeric naphthoquinone, is produced by Fusarium fungi. Although frequently found in food and feed, toxicological studies are limited. Hence, the in vitro toxicity of AURO was investigated in the colon adenocarcinoma cell line HT29 and the non-tumorigenic colon cells HCEC-1CT. Cytotoxic effects were found at concentrations ≥1 µM by evaluating mitochondrial activity (WST-1) and cellular proliferation (sulforhodamine B assay). 10 µM of AURO induced a decrease of cells in the S-phase, measured by flow cytometry. Confocal microscopy revealed AURO-mediated increase of intracellular p53 protein. In accordance, DNA-damage was seen in the comet assay (≥1 µM) together with enhanced levels of formamidopyrimidine-DNA-glycosylase (fpg)-sensitive sites, indicative for oxidative stress. An increase of intracellular reactive oxygen species was observed in the dichlorofluorescein (DCF) assay (≥5 µM). The GSSG/GSH ratio was elevated, but no impact on redox-sensitive Nrf2-dependent genes (Nrf2, γ-GCL, NQO1) was found at the gene expression level. However, induction of cytochrome P450 monooxygenase (CYP) 1A1 was measured at the gene expression and protein level. In conclusion, these in vitro data suggest that, when co-occurring, AURO might be considered as a potential contributor to the overall toxicity of respective Fusarium mycotoxin mixtures.


Assuntos
Colo/efeitos dos fármacos , Dano ao DNA , Fusarium/metabolismo , Mutagênicos/toxicidade , Naftoquinonas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Ensaio Cometa , Citometria de Fluxo , Células HT29 , Humanos , Mutagênicos/isolamento & purificação , Naftoquinonas/isolamento & purificação , Fase S/efeitos dos fármacos
14.
Arch Toxicol ; 91(1): 203-216, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27178040

RESUMO

The mycotoxins altertoxin I and II (ATX I and II) are secondary metabolites produced by Alternaria alternata fungi and may occur as food and feed contaminants, especially after long storage periods. Although the toxic potential of altertoxins has been previously investigated, little is known about the pathways that play a role in their intracellular metabolism. In order to identify potential targets of ATX I and ATX II, the two toxins were tested for interaction with the nuclear factor erythroid-derived 2-like 2/antioxidant response element (Nrf2/ARE) pathway in mammalian cells. This pathway can be activated by various stressors resulting in the expression of enzymes important for metabolism and detoxification. In the present study, only ATX II triggered a concentration-dependent increase in Nrf2-ARE-dependent luciferase expression. Consistently, confocal microscopy revealed an ATX II-induced increase in Nrf2 signal in HT29 intestinal cells. In agreement with these data, ATX II induced the transcription of γ-glutamate cysteine ligase, the key enzyme in catalyzing GSH synthesis of the cells and which is regulated by Nrf2. Further investigations demonstrated that ATX II induced a concentration-dependent depletion of the cellular GSH levels after short incubation time (3 h) and an increase after longer incubation time (24 h). In conclusion, it was demonstrated that ATX II can interact at several levels of the Nrf2-ARE pathway in mammalian cells and that ATX I does not share the same mechanism of action.


Assuntos
Elementos de Resposta Antioxidante/efeitos dos fármacos , Benzo(a)Antracenos/toxicidade , Genes Reporter/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Micotoxinas/toxicidade , Fator 2 Relacionado a NF-E2/agonistas , Transdução de Sinais/efeitos dos fármacos , Alternaria , Animais , Células CHO , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/química , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/agonistas , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Células HT29 , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Cinética , Microscopia Confocal , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Perileno/análogos & derivados , Perileno/toxicidade , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
15.
Arch Toxicol ; 91(3): 1213-1226, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27422292

RESUMO

Studies on the genotoxicity of Alternaria mycotoxins focus primarily on the native compounds. Alternariol (AOH) and its methyl ether (AME) have been reported to represent substrates for cytochrome P450 enzymes, generating hydroxylated metabolites. The impact of these phase I metabolites on genotoxicity remains unknown. In the present study, the synthesis and the toxicological effects of the metabolites 4-hydroxy alternariol (4-OH-AOH) and 4-hydroxy alternariol monomethyl ether (4-OH-AME) are presented and compared to the effects of the parent molecules. Although the two phase I metabolites contain a catecholic structure, which is expected to be involved in redox cycling, only 4-OH-AOH increased reactive oxygen species (ROS) in human esophageal cells (KYSE510), 4 times more pronounced than AOH. No ROS induction was observed for 4-OH-AME, although the parent compound showed some minor impact. Under cell-free conditions, both metabolites inhibited topoisomerase II activity comparable to their parent compounds. In KYSE510 cells, both metabolites were found to enhance the level of transient DNA-topoisomerase complexes in the ICE assay. Although the level of ROS was significantly increased by 4-OH-AOH, neither DNA strand breaks nor enhanced levels of formamidopyrimidine-DNA-glycosylase (FPG)-sensitive sites were observed. In contrast, AOH induced significant DNA damage in KYSE510 cells. Less pronounced or even absent effects of hydroxylated metabolites compared to the parent compounds might at least partly be explained by their poor cellular uptake. Glucuronidation as well as sulfation appear to have only a minor influence. Instead, methylation of 4-OH-AOH seems to be the preferred way of metabolism in KYSE510 cells, whereby the toxicological relevance of the methylation product remains to be clarified.


Assuntos
Lactonas/farmacocinética , Lactonas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Sistema Livre de Células , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Humanos , Hidroxilação , Lactonas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Testes de Mutagenicidade/métodos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Toxicol Lett ; 216(1): 23-30, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23154127

RESUMO

The mycotoxin alternariol (AOH) has been reported to possess genotoxic properties, inducing enhanced levels of DNA damage after only 1 h of incubation. In the present study we addressed the question whether the induction of oxidative stress might contribute to the genotoxic effects of AOH or its naturally occurring monomethylether (AME). In the dichlorofluorescein (DCF) assay, treatment of HT29 cells for 1 h enhanced the formation of dichlorofluorescein, indicative for ROS formation. The total glutathione (tGSH) was transiently decreased. In accordance with the results of the DCF assay, AOH and AME enhanced the proportion of the transcription factor Nrf2 in the nucleus. Concomitantly, the Nrf2/ARE-dependent genes γ-glutamylcysteine ligase (γ-GCL) and glutathione-S-transferase (GSTA1/2) showed enhanced transcript levels. After 24 h of incubation this effect was also reflected on the protein level by an increase of GST activity. However, in spite of the positive DCF assay and the activation of the redox-sensitive Nrf2/ARE-pathway, the level of oxidative DNA damage, measured in the comet assay by the addition of formamidopyrimidine-DNA-glycosylase (fpg) remained unaffected. Of note, after 3 h of incubation no significant DNA damaging potential of AOH and AME was detectable, indicating either inactivation of the compounds or enhanced DNA repair. In summary, the mycotoxins AOH and AME were found to modulate the redox balance of HT29 cells but without apparent negative effect on DNA integrity.


Assuntos
Alternaria/química , Lactonas/toxicidade , Micotoxinas/toxicidade , Ensaio Cometa , Meios de Cultura Livres de Soro , Dano ao DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Células HT29 , Humanos , Lactonas/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estrutura Molecular , Micotoxinas/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo
17.
Mol Nutr Food Res ; 55(5): 798-802, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21448860

RESUMO

Recently, the coffee constituents 5-O-caffeoylquinic acid (CGA) and N-methylpyridinium (NMP) were identified as inducers of the Nrf2/antioxidant-response element (ARE) detoxifying pathway under cell-culture condition. To study the impact of CGA and NMP on the Nrf2-activating properties of a complex coffee beverage, two different model coffees were generated by variation of the roasting conditions: a low-roast coffee rich in CGA and a heavy-roast low in CGA but containing high levels of NMP. Activation of the Nrf2/antioxidant-response element pathway was monitored in vitro and in vivo.


Assuntos
Antioxidantes/farmacologia , Quimioprevenção , Ácido Clorogênico/farmacologia , Café/química , Fator 2 Relacionado a NF-E2/fisiologia , Compostos de Piridínio/farmacologia , Elementos de Resposta/fisiologia , Indução Enzimática/efeitos dos fármacos , Glutamato-Cisteína Ligase/biossíntese , Células HT29 , Heme Oxigenase-1/biossíntese , Humanos , Espécies Reativas de Oxigênio/metabolismo
18.
J Nutr Biochem ; 22(5): 426-40, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20655719

RESUMO

Oxidative cellular stress initiates Nrf2 translocation into the nucleus, thus inducing antioxidant response element (ARE)-mediated expression of Phase II enzymes involved in detoxification and antioxidant defence. We investigated whether coffee extracts (CEs) of different proveniences and selected constituents have an impact on the Nrf2/ARE pathway in human colon carcinoma cells (HT29). Assessed as increased nuclear Nrf2 protein, Nrf2 nuclear translocation was modulated by different CEs as observed by Western blot analysis. In addition to the known Nrf2 activator 5-O-caffeoylquinic acid (CGA), pyridinium derivatives like the N-methylpyridinium ion (NMP) were identified as potent activators of Nrf2 nuclear translocation and ARE-dependent gene expression of selected antioxidative Phase II enzymes in HT29. Thereby, the substitution pattern at the pyridinium core structure determined the impact on Nrf2-signalling. In contrast, trigonelline was found to interfere with Nrf2 activation, effectively suppressing the NMP-mediated induction of Nrf2/ARE-dependent gene expression. In conclusion, several coffee constituents, partly already present in the raw material as well as those generated during the roasting process, contribute to the Nrf2-translocating properties of consumer-relevant coffee. A fine tuning in the degradation/formation of activating and deactivating constituents of the Nrf2/ARE pathway during the roasting process appears to be critical for the chemopreventive properties of the final coffee product.


Assuntos
Antioxidantes/farmacologia , Café/química , Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Antineoplásicos/farmacologia , Western Blotting , Ácidos Cafeicos/farmacologia , Núcleo Celular , Ácido Clorogênico/análise , Células HT29 , Humanos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Transporte Proteico , Compostos de Piridínio/metabolismo , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Elementos de Resposta/efeitos dos fármacos , Transdução de Sinais , Transcrição Gênica
19.
Mycotoxin Res ; 26(4): 247-56, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23605487

RESUMO

Alternariol (AOH) was reported recently to act as a topoisomerase poison. To underline the relevance of topoisomerase targeting for the genotoxic properties of AOH, we addressed the question whether human tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme vital to the repair of covalent DNA-topoisomerase adducts, affects AOH-mediated genotoxicity. The relevance of TDP1 activity on AOH-induced genotoxicity was investigated by the comet assay in human cells overexpressing GFP chimera of TDP1 or the inactive mutant TDP1(H263A) as well as in cells subjected to siRNA-mediated knock-down of endogenous TDP1. Cells overexpressing TDP1 exhibited significantly less DNA damage after treatment with AOH in comparison to cells expressing the inactive mutant TDP1(H263A). In accordance with these results, levels of AOH inducing DNA strand breaks were increased in TDP1-suppressed cells in comparison to cells transfected with control siRNA. The specific topoisomerase poisons camptothecin and etoposide caused comparable effects, underlining that TDP1 plays an important role in the repair of topoisomerase-mediated DNA damage. In summary, the repair enzyme TDP1 was identified as a factor for the modulation of AOH-mediated DNA damage in human cells.

20.
Mol Nutr Food Res ; 53(4): 441-51, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18727009

RESUMO

Alternariol (AOH), a mycotoxin formed by Alternaria alternata, has been reported to possess genotoxic properties. However, the underlying mechanism of action is unclear. Here, we tested the hypothesis that interactions with DNA-topoisomerases play a role in the DNA-damaging properties of AOH. First we compared DNA-damaging properties of AOH with other Alternaria mycotoxins such as AOH monomethyl ether (AME), altenuene and isoaltenuene. AOH and AME significantly increased the rate of DNA strand breaks in human carcinoma cells (HT29, A431) at micromolar concentrations, whereas altenuene and isoaltenuene did not affect DNA integrity up to 100 microM. Next, we selected AOH as the most DNA-damaging Alternaria metabolite for further studies of interactions with DNA topoisomerases. In cell-free assays, AOH potently inhibited DNA relaxation and stimulated DNA cleavage activities of topoisomerase I, IIalpha and IIbeta. Stabilisation of covalent topoisomerase II-DNA intermediates by AOH was also detectable in cell culture, and here, the IIalpha isoform was preferentially targeted. AOH is thus characterised as a poison of topoisomerase I and II with a certain selectivity for the IIalpha isoform. Since topoisomerase poisoning and DNA strand breakage occurred within the same concentration range, poisoning of topoisomerase I and II might at least contribute to the genotoxic properties of AOH.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Lactonas/toxicidade , Micotoxinas/toxicidade , Inibidores da Topoisomerase II , Antígenos de Neoplasias , Bisbenzimidazol/metabolismo , Linhagem Celular Tumoral , Quebras de DNA , DNA Topoisomerases Tipo II , Etídio/metabolismo , Humanos , Inibidores da Topoisomerase I
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA