Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Handb Exp Pharmacol ; (175): 305-25, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16722242

RESUMO

Neurotransmitters of neurons and neuroendocrine cells are concentrated first in the cytosol and then in either small synaptic vesicles ofpresynaptic terminals or in secretory vesicles by the activity of specific transporters of the plasma and the vesicular membrane, respectively. In the central nervous system the postsynaptic response depends--amongst other parameters-on the amount of neurotransmitter stored in a given vesicle. Neurotransmitter packets (quanta) vary over a wide range which may be also due to a regulation of vesicular neurotransmitter filling. Vesicular filling is regulated by the availability of transmitter molecules in the cytoplasm, the amount of transporter molecules and an electrochemical proton-mediated gradient over the vesicular membrane. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq. Galphao2 and Galphaq regulate vesicular monoamine transporter (VMAT) activities in brain and platelets, respectively. Galphao2 also regulates vesicular glutamate transporter (VGLUT) activity by changing its chloride dependence. It appears that the vesicular content activates the G protein, suggesting a signal transduction from the luminal site which might be mediated by a vesicular G protein-coupled receptor or as an alternative possibility by the transporter itself. Thus, G proteins control transmitter storage and thereby probablylink the regulation of the vesicular content to intracellular signal cascades.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Encéfalo/metabolismo , Cloretos/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Neurotransmissores/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo
2.
Rev Physiol Biochem Pharmacol ; 150: 140-60, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14517724

RESUMO

Neurotransmitters are key molecules of neurotransmission. They are concentrated first in the cytosol and then in small synaptic vesicles of presynaptic terminals by the activity of specific neurotransmitter transporters of the plasma and the vesicular membrane, respectively. It has been shown that postsynaptic responses to single neurotransmitter packets vary over a wide range, which may be due to a regulation of vesicular neurotransmitter filling. Vesicular filling depends on the availability of transmitter molecules in the cytoplasm and the active transport into secretory vesicles relying on a proton gradient. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq, which regulate VMAT activities in brain and platelets, respectively, and may also be involved in the regulation of VGLUTs. It appears that the vesicular content activates the G protein, suggesting a signal transduction form the luminal site which might be mediated by a vesicular G-protein coupled receptor or, as an alternative, possibly by the transporter itself. These novel functions of G proteins in the control of transmitter storage may link regulation of the vesicular content to intracellular signal cascades.


Assuntos
Neurotransmissores/metabolismo , Vesículas Sinápticas/fisiologia , Animais , Transporte Biológico , Transporte Biológico Ativo , Citoplasma/metabolismo , Citosol/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Terminações Pré-Sinápticas/fisiologia , Prótons , Ratos , Vesículas Secretórias/fisiologia , Transdução de Sinais
3.
J Physiol ; 535(Pt 2): 473-82, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11533137

RESUMO

1. The production of the central inhibitory transmitter GABA (gamma-aminobutyric acid) varies in response to different patterns of activity. It therefore seems possible that GABA metabolism can determine inhibitory synaptic strength and that presynaptic GABA content is a regulated parameter for synaptic plasticity. 2. We altered presynaptic GABA metabolism in cultured rat hippocampal slices using pharmacological tools. Degradation of GABA by GABA-transaminase (GABA-T) was blocked by gamma-vinyl-GABA (GVG) and synthesis of GABA through glutamate decarboxylase (GAD) was suppressed with 3-mercaptopropionic acid (MPA). We measured miniature GABAergic postsynaptic currents (mIPSCs) in CA3 pyramidal cells using the whole-cell patch clamp technique. 3. Elevated intra-synaptic GABA levels after block of GABA-T resulted in increased mIPSC amplitude and frequency. In addition, tonic GABAergic background noise was enhanced by GVG. Electron micrographs from inhibitory synapses identified by immunogold staining for GABA confirmed the enhanced GABA content but revealed no further morphological alterations. 4. The suppression of GABA synthesis by MPA had opposite functional consequences: mIPSC amplitude and frequency decreased and current noise was reduced compared with control. However, we were unable to demonstrate the decreased GABA content in biochemical analyses of whole slices or in electron micrographs. 5. We conclude that the transmitter content of GABAergic vesicles is variable and that postsynaptic receptors are usually not saturated, leaving room for up-regulation of inhibitory synaptic strength. Our data reveal a new mechanism of plasticity at central inhibitory synapses and provide a rationale for the activity-dependent regulation of GABA synthesis in mammals.


Assuntos
Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido 3-Mercaptopropiônico/farmacologia , 4-Aminobutirato Transaminase/antagonistas & inibidores , 4-Aminobutirato Transaminase/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Feminino , Glutamato Descarboxilase/antagonistas & inibidores , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Vigabatrina/farmacologia , Ácido gama-Aminobutírico/biossíntese
4.
Neuron ; 31(2): 247-60, 2001 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-11502256

RESUMO

The quantal release of glutamate depends on its transport into synaptic vesicles. Recent work has shown that a protein previously implicated in the uptake of inorganic phosphate across the plasma membrane catalyzes glutamate uptake by synaptic vesicles. However, only a subset of glutamate neurons expresses this vesicular glutamate transporter (VGLUT1). We now report that excitatory neurons lacking VGLUT1 express a closely related protein that has also been implicated in phosphate transport. Like VGLUT1, this protein localizes to synaptic vesicles and functions as a vesicular glutamate transporter (VGLUT2). The complementary expression of VGLUT1 and 2 defines two distinct classes of excitatory synapse.


Assuntos
Proteínas de Transporte/genética , Expressão Gênica , Proteínas de Membrana Transportadoras , Sinapses/química , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Animais , Química Encefálica , Proteínas de Transporte/análise , Proteínas de Transporte/química , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Neurônios/química , Neurônios/ultraestrutura , Células PC12 , Fosfatos/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Alinhamento de Sequência , Sinapses/fisiologia , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Distribuição Tecidual , Proteína Vesicular 1 de Transporte de Glutamato , Proteína Vesicular 2 de Transporte de Glutamato
5.
J Neurosci ; 20(6): 2131-41, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10704487

RESUMO

Monoamines such as noradrenaline and serotonin are stored in secretory vesicles and released by exocytosis. Two related monoamine transporters, VMAT1 and VMAT2, mediate vesicular transmitter uptake. Previously we have reported that in the rat pheochromocytoma cell line PC 12 VMAT1, localized to peptide-containing secretory granules, is controlled by the heterotrimeric G-protein Go(2). We now show that in BON cells, a human serotonergic neuroendocrine cell line derived from a pancreatic tumor expressing both transporters on large, dense-core vesicles, VMAT2 is even more sensitive to G-protein regulation than VMAT1. The activity of both transporters is only downregulated by Galphao(2), whereas comparable concentrations of Galphao(1) are without effect. In serotonergic raphe neurons in primary culture VMAT2 is also downregulated by pertussis toxin-sensitive Go(2). By electron microscopic analysis from prefrontal cortex we show that VMAT2 and Galphao(2) associate preferentially to locally recycling small synaptic vesicles in serotonergic terminals. In addition, Go(2)-dependent modulation of VMAT2 also works when using a crude synaptic vesicle preparation from this brain area. We conclude that regulation of monoamine uptake by the heterotrimeric G proteins is a general feature of monoaminergic neurons that controls the content of both large, dense-core and small synaptic vesicles.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Neurônios/enzimologia , Neuropeptídeos , Animais , Tumor Carcinoide , Permeabilidade da Membrana Celular/fisiologia , Regulação para Baixo/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Histamina/farmacocinética , Humanos , Glicoproteínas de Membrana/análise , Microscopia Imunoeletrônica , Plasticidade Neuronal/fisiologia , Neurônios/química , Neurônios/ultraestrutura , Células PC12 , Neoplasias Pancreáticas , Coelhos , Núcleos da Rafe/citologia , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Serotonina/farmacocinética , Trítio , Células Tumorais Cultivadas , Proteínas Vesiculares de Transporte de Aminas Biogênicas , Proteínas Vesiculares de Transporte de Monoamina
6.
Eur J Cell Biol ; 78(9): 650-6, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10535307

RESUMO

Regulated secretion requires the formation of a fusion complex consisting of synaptobrevin, syntaxin and SNAP 25. One of these key proteins, synaptobrevin, also complexes with the vesicle protein synaptophysin. The fusion complex and the synaptophysin-synaptobrevin complex are mutually exclusive. Using a combination of immunoprecipitation and crosslinking experiments we report here that the synaptophysin-synaptobrevin interaction in mouse whole brain and defined brain areas is upregulated during neuronal development as previously reported for rat brain. Furthermore the synaptophysin-synaptobrevin complex is also upregulated within 10-12 days of cultivation in mouse hippocampal neurons in primary culture. Besides being constituents of small synaptic vesicles in neurons synaptophysin and synaptobrevin also occur on small synaptic vesicle analogues of neuroendocrine cells. However, the synaptophysin-synaptobrevin complex was not found in neuroendocrine cell lines and more importantly it was also absent in the adrenal gland, the adenohypophysis and the neurohypophysis although the individual proteins could be clearly detected. In the rat pheochromocytoma cell line PC 12 complex formation between synaptophysin and synaptobrevin could be initiated by adult rat brain cytosol. In conclusion, the synaptophysin-synaptobrevin complex is upregulated in neurons in primary culture but is absent in the neuroendocrine cell lines and tissues tested. The complex may provide a reserve pool of synaptobrevin during periods of high synaptic activity. Such a reserve pool probably is less important for more slowly secreting neuroendocrine cells and neurons. The synaptophysin on small synaptic vesicle analogues in these cells appears to resemble the synaptophysin of embryonic synaptic vesicles since complex formation can be induced by adult brain cytosol.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo , Regulação para Cima , Glândulas Suprarrenais/metabolismo , Fatores Etários , Animais , Linhagem Celular , Imuno-Histoquímica , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Adeno-Hipófise , Neuro-Hipófise/metabolismo , Testes de Precipitina , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratos , Vesículas Sinápticas/metabolismo , Proteína 25 Associada a Sinaptossoma , Fatores de Tempo
7.
Eur J Cell Biol ; 78(5): 311-22, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10384982

RESUMO

Heterotrimeric G proteins play central roles in signal transduction of neurons and other cells. The variety of their alpha-, beta-, and gamma-subunits allows numerous combinations thereby confering specificity to receptor-G-protein-effector interactions. Using antisera against individual G-protein beta-subunits we here present a regional and subcellular distribution of Gbeta1, Gbeta2, and Gbeta5 in rat brain. Immunocytochemical specificity of the subtype-specific antisera is revealed in Sf9 cells infected with various G-protein beta-subunits. Since Gbeta-subunits together with a G-protein gamma-subunit affect signal cascades we include a distribution of the neuron-specific Ggamma2- and Ggamma3-subunits in selected brain areas. Gbeta1, Gbeta2, and Gbeta5 are preferentially distributed in the neuropil of hippocampus, cerebellum and spinal cord. Gbeta2 is highly concentrated in the mossy fibres of dentate gyrus neurons ending in the stratum lucidum of hippocampal CA3-area. High amounts of Gbeta2 also occur in interneurons innervating spinal cord alpha-motoneurons. Gbeta5 is differentially distributed in all brain areas studied. It is found in the pyramidal cells of hippocampal CA1-CA3 as well as in the granule cell layer of dentate gyrus and in some interneurons. In the spinal cord Gbeta5 in contrast to Gbeta2 concentrates around alpha-motoneurons. In cultivated mouse hippocampal and hypothalamic neurons Gbeta2 and Gbeta5 are found in different subcellular compartments. Whereas Gbeta5 is restricted to the perikarya, Gbeta2 is also found in processes and synaptic contacts where it partially colocalizes with the synaptic vesicle protein synaptobrevin. An antiserum recognizing Ggamma2 and Ggamma3 reveals that these subunits are less expressed in hippocampus and cerebellum. Presumably this antiserum specifically recognizes Ggamma2 and Ggamma3 in combinations with certain G alphas and/or Gbetas. The widespread but regionally and cellularly rather different distribution of Gbeta- and Ggamma2/3-subunits suggests that region-specific combinations of G-protein subunits mediate signal transduction in the central nervous system. The different subcellular distribution of Gbeta-subunits in cultivated neurons reflects that observed in tissue where Gbeta5 and Gbeta2 associate preferentially with the perikarya and the neuropil, respectively, and suggests an additional association of Gbeta2 with secretory vesicles.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Encéfalo/patologia , Linhagem Celular , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipotálamo/metabolismo , Camundongos , Dados de Sequência Molecular , Coelhos , Ratos , Medula Espinal/metabolismo , Medula Espinal/patologia , Spodoptera/citologia , Frações Subcelulares
8.
J Neurosci ; 19(6): 1922-31, 1999 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10066245

RESUMO

Exocytosis of synaptic vesicles requires the formation of a fusion complex consisting of the synaptic vesicle protein synaptobrevin (vesicle-associated membrane protein, or VAMP) and the plasma membrane proteins syntaxin and soluble synaptosomal-associated protein of 25 kDa (or SNAP 25). In search of mechanisms that regulate the assembly of the fusion complex, it was found that synaptobrevin also binds to the vesicle protein synaptophysin and that synaptophysin-bound synaptobrevin cannot enter the fusion complex. Using a combination of immunoprecipitation, cross-linking, and in vitro interaction experiments, we report here that the synaptophysin-synaptobrevin complex is upregulated during neuronal development. In embryonic rat brain, the complex is not detectable, although synaptophysin and synaptobrevin are expressed and are localized to the same nerve terminals and to the same pool of vesicles. In contrast, the ability of synaptobrevin to participate in the fusion complex is detectable as early as embryonic day 14. The binding of synaptoporin, a closely related homolog of synaptophysin, to synaptobrevin changes in a similar manner during development. Recombinant synaptobrevin binds to synaptophysin derived from adult brain extracts but not to that derived from embryonic brain extracts. Furthermore, the soluble cytosol fraction of adult, but not of embryonic, synaptosomes contains a protein that induces synaptophysin-synaptobrevin complex formation in embryonic vesicle fractions. We conclude that complex formation is regulated during development and is mediated by a posttranslational modification of synaptophysin. Furthermore, we propose that the synaptophysin-synaptobrevin complex is not essential for exocytosis but rather provides a reserve pool of synaptobrevin for exocytosis that can be readily recruited during periods of high synaptic activity.


Assuntos
Proteínas de Membrana/metabolismo , Vesículas Sinápticas/fisiologia , Sinaptofisina/metabolismo , Envelhecimento/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Senescência Celular/fisiologia , Citosol/metabolismo , Embrião de Mamíferos/metabolismo , Exocitose/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Proteínas R-SNARE , Ratos/embriologia , Sinaptofisina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA