Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Curr Med Chem ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38584538

RESUMO

Ovarian cancer is one of the most familiar kinds of gynecological cancer seen in women. Though it is not as familiar as breast cancer, the survival rate for ovarian cancer is very low when compared with breast cancer. Even after being one among the familiar types, to date, there are no proper treatments available for ovarian cancer. All the treatments that are present currently show a high rate of recurrence after the treatment. Therefore, treating this silent killer from the roots is the need of the hour. PI3K/AKT/m- TOR pathway is one of the pathways that get altered during ovarian cancer. Studies are already going on for the inhibition of PI3K and mTOR separately. Efforts have been made to inhibit either PI3K or mTOR separately earlier. However, due to its side effects and resistance to the treatments available, current studies are based on the inhibition of PI3K and mTOR together. Inhibition of PI3K and mTOR simultaneously reduces the chances of negative feedback, thus decreasing the toxicity. This review contains the evolution of PI3K and mTOR drugs that are approved by the FDA and are in the trials for different cancer types, including Ovarian cancer. In this article, how a molecular targeted therapy can be made successful and free from toxicity for treating ovarian cancer is discussed. Therefore, this review paves the way for finding an effective scaffold rather than the clinical part. The scaffold thus selected can be further modified and synthesized in the future as dual PI3K/mTOR inhibitors specifically for OC.

2.
Sci Rep ; 14(1): 9897, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688962

RESUMO

Alzheimer's disease (AD) is associated with cognitive deficits and epigenetic deacetylation that can be modulated by natural products. The role of natural oxyresveratrol-ß-cyclodextrin (ORV) on cognition and histone deacetylase activity in AD is unclear. Herein, in-silico docking and molecular dynamics simulation analysis determined that oxyresveratrol potentially targets histone deacetylase-2 (HDAC2). We therefore evaluated the in vivo ameliorative effect of ORV against cognitive deficit, cerebral and hippocampal expression of HDAC in experimental AD rats. Intracerebroventricular injection of STZ (3 mg/kg) induced experimental AD and the rats were treated with low dose (200 mg/kg), high dose (400 mg/kg) of ORV and donepezil (10 mg/kg) for 21 days. The STZ-induced AD caused cognitive and behavioural deficits demonstrated by considerable increases in acetylcholinesterase activity and escape latency compared to sham control. The levels of malondialdehyde (MDA) and HDAC activity were significantly increased in AD disease group comparison to the sham. Interestingly, the ORV reversed the cognitive-behavioural deficit and prominently reduced the MDA and HDAC levels comparable to the effect of the standard drug, donepezil. The findings suggest anti-AD role of ORV via antioxidant effect and inhibition of HDAC in the hippocampal and frontal cortical area of rats for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Modelos Animais de Doenças , Histona Desacetilase 2 , Extratos Vegetais , Estilbenos , Estreptozocina , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Ratos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Masculino , Histona Desacetilase 2/metabolismo , beta-Ciclodextrinas/farmacologia , Simulação de Acoplamento Molecular , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Malondialdeído/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Simulação de Dinâmica Molecular , Ratos Wistar
3.
J Biomol Struct Dyn ; : 1-14, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686917

RESUMO

Despite considerable improvement in therapy and diagnosis, brain tumors remain a global public health concern. Among all brain tumors, 80% are due to Glioblastoma. The average survival rate of a patient once diagnosed with glioblastoma is 15 months. Lately, the role of peptidase enzymes, especially Neprilysin, a neutral endopeptidase, is gaining attention for its role in tumor growth regulation. Neprilysin expressions are positively correlated with several tumors including GBM and reduced expression of NEP protein is associated with the pathogenesis of multiple tumors. One of the main reasons for NEP protein downregulation is the action of Histone deacetylase (HDAC) enzymes, especially HDAC1. Additionally, studies have reported that increased levels of HDAC1 are responsible for downregulating NEP gene expression. Hence, HDAC1 inhibition can be a good target to elevate NEP levels, which can be a good therapeutic approach to GBM. This study utilizes the computational drug repurposing tool, Schrodinger Maestro to identify HDAC1 inhibitors from the ZINC15 database.1379 FDA-approved drugs from the ZINC15 database were screened through molecular docking. Based on docking score and ligand-protein interaction, the top ten molecules were selected which were then subjected to binding energy calculation and molecular dynamics (MD) simulations. The three most active drugs from the MD simulations- ZINC22010649 (Panobinostat), ZINC4392649 (Tasimelteon) and ZINC1673 (Melphalan), were tested on C6 and U87 MG glioblastoma cells for cytotoxicity and HDAC1 protein levels using western blot analysis. Among the three drugs, Panobinostat exhibited potent cytotoxic action and showed a significant reduction in the HDAC1 protein levels.Communicated by Ramaswamy H. Sarma.

4.
AAPS PharmSciTech ; 25(3): 44, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383866

RESUMO

The study aims to design and optimize the floating formulations of the aqueous extract of Desmostachya bipinnata (ADB) to treat peptic ulcers. The trial concentrations of HPMC E50, HPMC K4M, and Carbopol 940 were used as factors, and floating lag time, total floating time, and % drug release at 12 h were used as responses. The formulation underwent evaluation for different parameters: aspirin-induced ulcers in rats assessed the antiulcer activity, and X-ray studies in rabbits evaluated the gastroretentive nature. The optimized formulation has shown a floating lag time of 32 s and floated in the gastric medium for more than 9 h with a maximum drug release of 93% at the end of 12 h by following the Korsmeyer-Peppas drug release mechanism. The optimized formulation has good flow properties. The FT-IR, DSC, and XRD studies show ADB and excipients didn't show any incompatibility. The formulation has shown significant antiulcer activity against aspirin-induced ulcers in rats, with an ulcer index of 3.38 ± 0.24 and inhibition of 76.67 ± 0.56%. The in vivo X-ray imaging proved the gastric retention of the formulations for more than 8 h. The results of the formulations demonstrate the floating ability and sustained drug release of the tablet responsible for treating peptic ulcers to show a localized effect in the gastric region and to maintain the ROS levels.


Assuntos
Úlcera Péptica , Úlcera , Animais , Coelhos , Ratos , Aspirina/efeitos adversos , Preparações de Ação Retardada , Espectroscopia de Infravermelho com Transformada de Fourier , Comprimidos
5.
J Biomol Struct Dyn ; 42(7): 3764-3789, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37227789

RESUMO

Glioblastoma (GBM) is an aggressive malignant type of brain tumor. Targeting one single intracellular pathway might not alleviate the disease, rather it activates the other molecular pathways that lead to the worsening of the disease condition. Therefore, in this study, we attempted to target both isocitrate dehydrogenase 1 (IDH1) and IDH2, which are one of the most commonly mutated proteins in GBM and other cancer types. Here, standard precision and extra precision docking, IFD, MM-GBSA, QikProp, and molecular dynamics (MD) simulation were performed to identify the potential dual inhibitor for IDH1 and IDH2 from the enamine database containing 59,161 ligands. Upon docking the ligands with IDH1 (PDB: 6VEI) and IDH2 (PDB: 6VFZ), the top eight ligands were selected, based on the XP Glide score. These ligands produced favourable MMGBSA scores and ADME characteristics. Finally, the top four ligands 12953, 44825, 51295, and 53210 were subjected to MD analysis. Interestingly, 53210 showed maximum interaction with Gln 277 for 99% in IDH1 and Gln 316 for 100% in IDH2, which are the crucial amino acids for the inhibitory function of IDH1 and IDH2 to target GBM. Therefore, the present study attempts to identify the novel molecules which could possess a pan-inhibitory action on both IDH1 and IDH that could be crucial in the management of GBM. Yet further evaluation involving in vitro and in vivo studies is warranted to support the data in our current study.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Mutação , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Encefálicas/tratamento farmacológico
6.
Toxicol Mech Methods ; 34(2): 214-235, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921264

RESUMO

Fluorosis, a chronic condition brought on by excessive fluoride ingestion which, has drawn much scientific attention and public health concern. It is a complex and multifaceted issue that affects millions of people worldwide. Despite decades of scientific research elucidating the causes, mechanisms, and prevention strategies for fluorosis, there remains a significant gap between scientific understanding and public health implementation. While the scientific community has made significant strides in understanding the etiology and prevention of fluorosis, effectively translating this knowledge into public health policies and practices remains challenging. This review explores the gap between scientific research on fluorosis and its practical implementation in public health initiatives. It suggests developing evidence-based guidelines for fluoride exposure and recommends comprehensive educational campaigns targeting the public and healthcare providers. Furthermore, it emphasizes the need for further research to fill the existing knowledge gaps and promote evidence-based decision-making. By fostering collaboration, communication, and evidence-based practices, policymakers, healthcare professionals, and the public can work together to implement preventive measures and mitigate the burden of fluorosis on affected communities. This review highlighted several vital strategies to bridge the gap between science and public health in the context of fluorosis. It emphasizes the importance of translating scientific evidence into actionable guidelines, raising public awareness about fluoride consumption, and promoting preventive measures at individual and community levels.


Assuntos
Fluoretos , Fluorose Dentária , Humanos , Fluoretos/toxicidade , Fluorose Dentária/epidemiologia , Fluorose Dentária/etiologia , Fluorose Dentária/prevenção & controle , Saúde Pública , Fluoretação/efeitos adversos
7.
Adv Pharm Bull ; 13(4): 688-700, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38022801

RESUMO

Glycogen synthase kinase-3 (GSK-3) was discovered to be a multifunctional enzyme involved in a wide variety of biological processes, including early embryo formation, oncogenesis, as well cell death in neurodegenerative diseases. Several critical cellular processes in the brain are regulated by the GSK-3ß, serving as a central switch in the signaling pathways. Dysregulation of GSK-3ß kinase has been reported in diabetes, cancer, Alzheimer's disease, schizophrenia, bipolar disorder, inflammation, and Huntington's disease. Thus, GSK-3ß is widely regarded as a promising target for therapeutic use. The current review article focuses mainly on Alzheimer's disease, an age-related neurodegenerative brain disorder. GSK-3ß activation increases amyloid-beta (Aß) and the development of neurofibrillary tangles that are involved in the disruption of material transport between axons and dendrites. The drug-binding cavities of GSK-3ß are explored, and different existing classes of GSK-3ß inhibitors are explained in this review. Non-ATP competitive inhibitors, such as allosteric inhibitors, can reduce the side effects compared to ATP-competitive inhibitors. Whereas ATP-competitive inhibitors produce disarrangement of the cytoskeleton, neurofibrillary tangles formation, and lead to the death of neurons, etc. This could be because they are binding to a site separate from ATP. Owing to their interaction in particular and special binding sites, allosteric ligands interact with substrates more selectively, which will be beneficial in resolving drug-induced resistance and also helpful in reducing side effects. Hence, in this review, we focussed on the allosteric GSK-3ß inhibitors and discussed their futuristic opportunities as anti-Alzheimer's compounds.

8.
Biochem Biophys Rep ; 35: 101544, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720313

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most difficult to treat cancers. Gemcitabine is still the standard of care treatment for PDAC but with modest survival benefit and well reported resistance. Here we explored potential of inhibiting p21 activated kinase 4 (PAK4), a downstream protein of KRAS oncogenic pathway, in combination with Gemcitabine in PDAC cells. PAK4 inhibition by KPT-9274 led to significant potentiation of Gemcitabine activity in PDAC cells, with an increase in apoptosis, DNA damage and cell cycle arrest. At molecular level, PAK4 inhibition dose dependently inhibited Gemcitabine-induced ß-catenin, c-JUN and Ribonucleotide Reductase subunit 2 (RRM2) levels. PAK4 inhibition further inhibited levels of phosphorylated ERK (p-ERK); Gemcitabine-induced phosphorylated AKT (p-AKT), phosphorylated and total c-Myc. These results suggest possible role of ß-catenin, p-ERK and p-AKT, key effector proteins of Wnt/ß-catenin, MAPK and PI3K pathways respectively, in sensitisation of Gemcitabine activity with PAK4 inhibition. Our data unravel probable molecular mechanisms behind combination of PAK4 inhibition with Gemcitabine to counter PDAC, which may be unequivocally proved further with knock down of PAK4. Our findings provide a strong rationale to exploit the combination therapy of Gemcitabine and PAK4 inhibitor for PDAC at pre-clinical and clinical levels.

9.
Mol Divers ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394684

RESUMO

The Akt pathway plays a significant role in various diseases like Alzheimer's, Parkinson's, and Diabetes. Akt is the central protein whose phosphorylation controls many downstream pathways. Binding of small molecules to the PH domain of Akt facilitates its phosphorylation in the cytoplasm and upregulates the Akt pathway. In the current study, to identify Akt activators, ligand-based approaches like 2D QSAR, shape, and pharmacophore-based screening were used, followed by structure-based approaches such as docking, MM-GBSA, ADME prediction, and MD simulation. The top twenty-five molecules from the Asinex gold platinum database found to be active in most 2D QSAR models were used for shape and pharmacophore-based screening. Later docking was performed using the PH domain of Akt1 (PDB: 1UNQ), and 197105, 261126, 253878, 256085, and 123435 were selected based on docking score and interaction with key residues, which were druggable and formed a stable protein-ligand complex. MD simulations of 261126 and 123435 showed better stability and interactions with key residues. To further investigate the SAR of 261126 and 123435, derivatives were downloaded from PubChem, and structure-based approaches were employed. MD simulation of derivatives 12289533, 12785801, 83824832, 102479045, and 6972939 was performed, in which 83824832 and 12289533 showed interaction with key residues for a longer duration of time, proving that they may act as Akt activators.

10.
Mol Divers ; 27(5): 2015-2036, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36244040

RESUMO

Breast cancer is a common form of cancer that affects both men and women. One of the most common types of genomic flaws in cancer is the aberrations in the PI3K/AKT/mTOR pathway. The benefit of dual targeting PI3K as well as mTOR is that the kinase-positive feedback loops are more effectively inhibited. Therefore, in the current study, structure-based models like molecular docking, MM-GBSA, Qikprop, induced fit docking, simulated molecular dynamics (MD), and thermal MM-GBSA were used to identify the phytochemicals from the zinc 15 database, which may inhibit PI3K and mTOR. After docking the phytochemicals with PI3K (PDB 4FA6), ten ligands based on the docking score were selected, among which salvianolic acid C had the highest docking score. Hence, salvianolic acid A was also docked. All the ligands taken showed a binding energy of greater than - 30 kcal/mol. The predicted ADME showed that the ligands have druggable properties. By performing MD of the top five ligands and salvianolic acid A, it was found that ZINC000059728582, ZINC000257545754, ZINC000253532301, and salvianolic acid A form a stable complex with PI3K protein, among which ZINC000014690026 showed interaction with Val 882 for more than 89% of the time. Salvianolic acid A is already proven to suppress tumor growth in acute myeloid leukemia by inhibiting PI3K/AKT pathway, but the exact protein target is unknown. Therefore, the present study identifies new molecules and provides evidence for salvianolic acid A for dual inhibition. Further experiments must be performed both in vitro and in vivo to support the predictions of these computational tools.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Feminino , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ligantes , Serina-Treonina Quinases TOR , Neoplasias da Mama/metabolismo , Compostos Fitoquímicos/farmacologia
11.
Curr Stem Cell Res Ther ; 18(5): 653-675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36424799

RESUMO

Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 with severe respiratory failure and organ damage that later appeared as a pandemic disease. Worldwide, people's mental and physical health and socioeconomic have been affected. Currently, with no promising treatment for COVID-19, the existing anti-viral drugs and vaccines are the only hope to boost the host immune system to reduce morbidity and mortality rate. Unfortunately, several reports show that people who are partially or fully vaccinated are still susceptible to COVID-19 infection. Evidence suggests that COVID-19 immunopathology may include dysregulation of macrophages and monocytes, reduced type 1 interferons (IFN-1), and enhanced cytokine storm that results in hypersecretion of proinflammatory cytokines, capillary leak syndrome, intravascular coagulation, and acute respiratory distress syndrome (ARDS) ultimately leading to the worsening of patient's condition and death in most cases. The recent use of cell-based therapies such as mesenchymal stem cells (MSCs) for critically ill COVID-19 patients has been authorized by the Food and Drug Administration (FDA) to alleviate cytokine release syndrome. It protects the alveolar epithelial cells by promoting immunomodulatory action and secreting therapeutic exosomes to improve lung function and attenuate respiratory failure. As a result, multiple clinical trials have been registered using MSCs that aim to use various cell sources, and dosages to promote safety and efficacy against COVID-19 infection. In this review, the possibility of using MSCs in COVID-19 treatment and its associated challenges in their use have been briefly discussed.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Respiratória , Humanos , COVID-19/terapia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Citocinas
12.
Oncol Res ; 32(1): 73-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188673

RESUMO

Exosomes, small tiny vesicle contains a large number of intracellular particles that employ to cause various diseases and prevent several pathological events as well in the human body. It is considered a "double-edged sword", and depending on its biological source, the action of exosomes varies under physiological conditions. Also, the isolation and characterization of the exosomes should be performed accurately and the methodology also will vary depending on the exosome source. Moreover, the uptake of exosomes from the recipients' cells is a vital and initial step for all the physiological actions. There are different mechanisms present in the exosomes' cellular uptake to deliver their cargo to acceptor cells. Once the exosomal uptake takes place, it releases the intracellular particles that leads to activate the physiological response. Even though exosomes have lavish functions, there are some challenges associated with every step of their preparation to bring potential therapeutic efficacy. So, overcoming the pitfalls would give a desired quantity of exosomes with high purity.


Assuntos
Exossomos , Neoplasias , Humanos
13.
Struct Chem ; 33(5): 1609-1617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754942

RESUMO

Scientific insights gained from the severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS) outbreaks have been assisting scientists and researchers in the quest of antiviral drug discovery process against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses and influenza viruses both rely on the host type 2 transmembrane serine protease, TMPRSS2, for entry and propagation. Recent studies report SARS-CoV-2 also uses TMPRSS2 to enter cells. In the current study, we employed structure-based virtual screening of 1,82,651 natural compounds downloaded from the zin database against the homology model of the TMPRSS2 protein, followed by a molecular dynamics-based simulation to identify potential TMPRSS2 hits. The virtual screening yielded 110 hits with docking scores ranging from -8.654 to -6.775 and glide energies ranging from -55.714 to -29.065 kcal/mol. The binding mode analysis revealed that the hit molecules made H-bond, Pi-Pi stacking and salt bridge contacts with the TMPRSS2 active site residues. MD simulations of the top two hits (ZINC000095912839 and ZINC000085597504) revealed to form a stable complex with TMPRSS2, with a minimal RMSD and RMSF fluctuation. Both the hit structures interacted strongly with the Asp180, Gln183, Gly184, Ser186, Gly207 and Gly209, as predicted by Glide XP docking, and formed a significant H-bond interaction with Ser181 in MD simulation. Among these two, ZINC000095912839 was having the most stable binding interaction with TMPRSS2 of the two molecules. The present study successfully identified TMPRSS2 ligands from a database of zinc natural molecules as potential leads for novel SARs-CoV-2 treatment. Supplementary Inform: The online version contains supplementary material available at 10.1007/s11224-022-01991-3.

14.
Struct Chem ; 33(5): 1529-1541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345416

RESUMO

The scientific insights gained from the severe acute respiratory syndrome (SARS) and the middle east respiratory syndrome (MERS) outbreaks are helping scientists to fast-track the antiviral drug discovery process against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses, as well as influenza viruses, depend on host type 2 transmembrane serine protease, TMPRSS2, for entry and propagation in the human cell. Recent studies show that SARS-CoV-2 also uses TMPRSS2 for its cell entry. In the present study, a structure-based virtual screening of 52,337, protease ligands downloaded from the Zinc database was carried out against the homology model of TMPRSS2 protein followed by the molecular dynamics-based simulation to identify potential TMPRSS2 hits. The virtual screening has identified 13 hits with a docking score range of -10.447 to -9.863 and glide energy range of -60.737 to -40.479 kcal/mol. The binding mode analysis shows that the hit molecules form H-bond (Asp180, Gly184 & Gly209), Pi-Pi stacking (His41), and salt bridge (Asp180) type of contacts with the active site residues of TMPRSS2. In the MD simulation of ZINC000013444414, ZINC000137976768, and ZINC000143375720 hits show that these molecules form a stable complex with TMPRSS2. The complex equilibrates well with a minimal RMSD and RMSF fluctuation. All three structures, as predicted in Glide XP docking, show a prominent interaction with the Asp180, Gly184, Gly209, and His41. Further, MD simulation also identifies a notable H-bond interaction with Ser181 for all three hits. Among these hits, ZINC000143375720 shows the most stable binding interaction with TMPRSS2. The present study is successful in identifying TMPRSS2 ligands from zinc data base for a possible application in the treatment of COVID-19.

15.
Mol Divers ; 26(5): 2793-2811, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35146638

RESUMO

Wnt signaling pathway is an evolutionarily conserved pathway responsible for neurogenesis, axon outgrowth, neuronal polarity, synapse formation, and maintenance. Downregulation of Wnt signaling has been found in patients with Alzheimer's disease (AD). Several experimental approaches to activate Wnt signaling pathway have proven to be beneficial in alleviating AD, which is one of the new therapeutic approaches for AD. The current study focuses on the computational structure-based virtual screening followed by the identification of potential phytomolecules targeting different markers of Wnt signaling like WIF1, DKK1, LRP6, GSK-3ß, and acetylcholine esterase. Initially, screening of 1924 compounds from the plant-based library of Zinc database was done for the selected five proteins using docking approach followed by MM-GBSA calculations. The top five hit molecules were identified for each protein. Based on docking score, and binding interactions, the top two hit molecules for each protein were selected as promising molecules for the molecular dynamic (MD) simulation study with the five proteins. Therefore, from this in silico based study, we report that Mangiferin could be a potential molecule targeting Wnt signaling pathway modulating the LRP6 activity, Baicalin for AChE activity, Chebulic acid for DKK1, ZINC103539689 for WIF1, and Morin for GSk-3ß protein. However, further validation of the activity is warranted based on in vivo and in vitro experiments for better understanding and strong claim. This study provides an in silico approach for the identification of modulators of the Wnt signaling pathway as a new therapeutic approach for AD.


Assuntos
Doença de Alzheimer , Simulação de Dinâmica Molecular , Acetilcolina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Esterases/metabolismo , Esterases/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Simulação de Acoplamento Molecular , Via de Sinalização Wnt , Zinco
16.
Chem Zvesti ; 76(2): 1063-1083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34690412

RESUMO

There is an urgent need for reliable cure and preventive measures in this hour of the outbreak of SARS-CoV-2. Siddha- and Ayurvedic-based classical formulations have antiviral properties and great potential therapeutic choice in this pandemic situation. In the current study, in silico-based analysis for the binding potential of phytoconstituents from the classical formulations suggested by the Ministry of Ayush (Kabasura Kudineer, Shwas Kuthar Rasa with Kantakari and pippali churna, Talisadi churna) to the interface domain of the SARS-CoV-2 receptor-binding domain and angiotensin-converting enzyme 2 was performed. Maestro software from Schrodinger and tools like Glide Docking, induced fit docking, MM-GBSA, molecular dynamics (MD) simulation, and thermal MM-GBSA was used to analyze the binding of protein PDB ID:6VW1 and the selected 133 ligands in comparison with drug molecules like favipiravir and ribavirin. QikProp-based ADMET evaluation of all the phytoconstituents found them nontoxic and with drug-like properties. Selection of top ten ligands was made based on docking score for further MM-GBSA analysis. After performing IFD of top five molecules iso-chlorogenic acid, taxiphyllin, vasicine, catechin and caffeic acid, MD simulation and thermal MM-GBSA were done. Iso-chlorogenic acid had formed more stable interaction with key residue among all phytoconstituents. Computational-based study has highlighted the potential of the many constituents of traditional medicine to interact with the SARS-CoV-2 RBD and ACE2, which might stop the viral entry into the cell. However, in vivo experiments and clinical trials are necessary for supporting this claim. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11696-021-01917-z.

18.
J Biomol Struct Dyn ; 40(20): 9577-9591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34080526

RESUMO

Alzheimer disease (AD) is the most common, irreversible and progressive form of dementia for which the exact pathology and cause are still not clear. At present, we are only confined to symptomatic treatment, and the lack of disease-modifying therapeutics is worrisome. Alteration of Wnt signaling has been linked to metabolic diseases as well as AD. The crosstalk between Canonical Wnt signaling and insulin signaling pathway has been widely studied and accepted from several clinical and preclinical studies that have proven the beneficial effect of antidiabetic medications in the case of memory and cognition loss. This structure-based in silico study was focused on exploring the link between the currently available FDA approved antidiabetic drugs and the Wnt signaling pathway. The library of antidiabetics was obtained from drug bank and was screened for their binding affinity with protein (PDB ID: 3S2K) LRP6, a coreceptor of the Wnt signaling pathway using GLIDE module of Schrodinger. The top molecules, with higher docking score, binding energy and stable interactions, were subjected to energy-based calculation using MMGBSA, followed by a molecular dynamics-based simulation study. Drugs of class α-glucosidase inhibitors and peroxisome proliferator-activated receptors (PPARs) agonists were found to have a strong affinity towards LRP6 proteins, highlighting the possibility of the modulation of Wnt signaling by antidiabetics as one of the possible mechanisms for use in AD. However, further experimental based in vitro and in vivo studies are warranted for verification and support.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Via de Sinalização Wnt , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/farmacologia , Reposicionamento de Medicamentos , Hipoglicemiantes/farmacologia
19.
Pharmacol Rep ; 73(5): 1265-1272, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33840054

RESUMO

Human immunodeficiency virus-1 (HIV-1) infection remains to be one of the major threats throughout the world. Many researchers are working in this area to find a cure for HIV-1. The group of the FDA approved drugs which are currently used against HIV-1 in the clinical practice include nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), integrase inhibitors (InIs), and protease inhibitors (PIs). Fixed dose combinations (FDCs) of these drugs are available and are used as per the anti-retroviral therapy (ART) guidelines. Despite these, unfortunately, there is no cure for HIV1 infection to date. The present review is focused upon describing the importance of a post-transcriptional regulatory protein "Rev", responsible for latent HIV-1 infection as a possible, and promising therapeutic target against HIV-1.


Assuntos
Fármacos Anti-HIV/farmacologia , Sistemas de Liberação de Medicamentos , Infecções por HIV/tratamento farmacológico , HIV-1 , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética
20.
Pharmacol Rep ; 72(4): 799-813, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32666476

RESUMO

BACKGROUND: The epidermal growth factor receptor (EGFR) inhibitors represent the first-line therapy regimen for non-small cell lung cancer (NSCLC). Most of these inhibitors target the ATP-site to stop the aggressive development of NSCLC. Stabilization of the ATP-binding on EGFR is difficult due to autophosphorylation of the EGFR domain. This leads to activation of nonintrinsic influence of the tumor microenvironment and expression of anti-apoptotic pathways and drug resistance. METHODS: The NSCLC related literature search was carried out using online databases such as Scopus, Web of Sciences, PubMed, Protein Data Bank and UniPort for the last ten years and selected articles are referred for discussion in this review. RESULTS: To overcome the problem of mutations in NSCLC, the allosteric site of EGFR was targeted, which shows significant therapeutic outcome without causing resistance. Compounds like EAI001, EAI045 JBJ-04-125-02, DDC4002 and a series of small molecules with an affinity towards the EGFR allosteric site are reported and are under the investigational stage. These compounds are categorized under fourth-generation anti-NSCLC agents. CONCLUSION: Composition of this review highlights the advantage of inhibiting allosteric site in the EGFRTK receptor domains and presents a comparative analysis of the new fourth-generation anti-NSCLC agents to overcome the drug resistance.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Sítio Alostérico/fisiologia , Animais , Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA