Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Toxicol Appl Pharmacol ; 485: 116891, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485061

RESUMO

In the context of harmful algal blooms, fish can be exposed to the combined effects of more than one toxin. We studied the effects of consecutive exposure to Microcystin-LR (MCLR) in vivo and paralytic shellfish toxins (PST) ex vivo/in vitro (MCLR+PST) in the rainbow trout Oncorhynchus mykiss's middle intestine. We fed juvenile fish with MCLR incorporated in the feed every 12 h and euthanized them 48 h after the first feeding. Immediately, we removed the middle intestine to make ex vivo and in vitro preparations and exposed them to PST for one hour. We analyzed glutathione (GSH) and glutathione disulfide (GSSG) contents, glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), and protein phosphatase 1 (PP1) activities in ex vivo intestinal strips; apical and basolateral ATP-biding cassette subfamily C (Abcc)-mediated transport in ex vivo everted and non- everted sacs; and reactive oxygen species (ROS) production in isolated enterocytes in vitro. MCLR+PST treatment decreased the GSH content, GSH/GSSG ratio, GST activity, and increased ROS production. GR activity remained unchanged, while CAT activity only increased in response to PST. MCLR inhibited PP1 activity and activated Abcc-mediated transport only at the basolateral side of the intestine. Our results show a combined effect of MCLR+PST on the oxidative balance in the O. mykiss middle intestine, which is not affected by the two toxins groups when applied individually. Basolateral Abcc transporters activation by MCLR treatment could lead to an increase in the absorption of toxicants (including MCLR) into the organism. Therefore, MCLR makes the O. mykiss middle intestine more sensitive to possibly co-occurring cyanotoxins like PST.


Assuntos
Mucosa Intestinal , Toxinas Marinhas , Microcistinas , Oncorhynchus mykiss , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Microcistinas/toxicidade , Toxinas Marinhas/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oncorhynchus mykiss/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Saxitoxina/toxicidade
2.
Aquat Toxicol ; 253: 106327, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274501

RESUMO

Global climate change favors explosive population growth events (blooms) of phytoplanktonic species, often producing toxic products, e.g., several genera of cyanobacteria synthesize a family of cyanotoxins called microcystins (MCs). Freshwater fish such as the rainbow trout Oncorhynchus mykiss can uptake MCs accumulated in the food chain. We studied the toxic effects and modulation of the activity and expression of multixenobiotic resistance proteins (ABCC transporters and the enzyme glutathione S-transferase (GST) in the O. mykiss middle intestine by microcystin-LR (MCLR). Juvenile fish were fed with MCLR incorporated in the food every 12 h and euthanized at 12, 24, or 48 h. We estimated the ABCC-mediated transport in ex vivo intestinal strips to estimate ABCC-mediated transport activity. We measured total and reduced (GSH) glutathione contents and GST and glutathione reductase (GR) activities. We studied MCLR cytotoxicity by measuring protein phosphatase 1 (PP1) activity and lysosomal membrane stability. Finally, we examined the relationship between ROS production and lysosomal membrane stability through in vitro experiments. Dietary MCLR had a time-dependent effect on ABCC-mediated transport, from inhibition at 12 h to a significant increase after 48 h. GST activity decreased only at 12 h, and GR activity only increased at 48 h. There were no effects on GSH or total glutathione contents. MCLR inhibited PP1 activity and diminished the lysosomal membrane stability at the three experimental times. In the in vitro study, the lysosomal membrane stability decreased in a concentration-dependent fashion from 0 to 5 µmol L - 1 MCLR, while ROS production increased only at 5 µmol L - 1 MCLR. MCLR did not affect mRNA expression of abcc2 or gst-π. We conclude that MCLR modulates ABCC-mediated transport activity in O. mykiss's middle intestine in a time-dependent manner. The transport rate increase does not impair MCLR cytotoxic effects.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Microcistinas/toxicidade , Microcistinas/metabolismo , Oncorhynchus mykiss/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Intestinos , Glutationa Transferase/metabolismo , Glutationa/metabolismo
3.
Front Physiol ; 12: 791834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955897

RESUMO

In fish, the intestine is fundamental for digestion, nutrient absorption, and other functions like osmoregulation, acid-base balance, and excretion of some metabolic products. These functions require a large exchange surface area, which, in turn, favors the absorption of natural and anthropogenic foreign substances (xenobiotics) either dissolved in water or contained in the food. According to their chemical nature, nutrients, ions, and water may cross the intestine epithelium cells' apical and basolateral membranes by passive diffusion or through a wide array of transport proteins and also through endocytosis and exocytosis. In the same way, xenobiotics can cross this barrier by passive diffusion or taking advantage of proteins that transport physiological substrates. The entry of toxic substances is counterbalanced by an active efflux transport mediated by diverse membrane proteins, including the ATP binding cassette (ABC) proteins. Recent advances in structure, molecular properties, and functional studies have shed light on the importance of these proteins in cellular and organismal homeostasis. There is abundant literature on mammalian ABC proteins, while the studies on ABC functions in fish have mainly focused on the liver and, to a minor degree, on the kidney and other organs. Despite their critical importance in normal physiology and as a barrier to prevent xenobiotics incorporation, fish intestine's ABC transporters have received much less attention. All the ABC subfamilies are present in the fish intestine, although their functionality is still scarcely studied. For example, there are few studies of ABC-mediated transport made with polarized intestinal preparations. Thus, only a few works discriminate apical from basolateral transport activity. We briefly describe the main functions of each ABC subfamily reported for mammals and other fish organs to help understand their roles in the fish intestine. Our study considers immunohistochemical, histological, biochemical, molecular, physiological, and toxicological aspects of fish intestinal ABC proteins. We focus on the most extensively studied fish ABC proteins (subfamilies ABCB, ABCC, and ABCG), considering their apical or basolateral location and distribution along the intestine. We also discuss the implication of fish intestinal ABC proteins in the transport of physiological substrates and aquatic pollutants, such as pesticides, cyanotoxins, metals, hydrocarbons, and pharmaceutical products.

4.
Pestic Biochem Physiol ; 178: 104920, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446196

RESUMO

Chlorpyrifos (CPF) is an organophosphate pesticide, commonly detected in water and food. Despite CPF toxicity on aquatic species has been extensively studied, few studies analyze the effects of CPF on fish transcriptional pathways. The Pregnane X receptor (PXR) is a nuclear receptor that is activated by binding to a wide variety of ligands and regulates the transcription of enzymes involved in the metabolism and transport of many endogenous and exogenous compounds. We evaluated the mRNA expression of PXR-regulated-genes (PXR, CYP3A27, CYP2K1, ABCB1, UGT, and ABCC2) in intestine and liver of the rainbow trout, Oncorhynchus mykiss, exposed in vivo to an environmentally relevant CPF concentration. Our results demonstrate that the expression of PXR and PXR-regulated genes is increased in O. mykiss liver and intestine upon exposure to CPF. Additionally, we evaluated the impact of CPF on other cellular pathway involved in xenobiotic metabolism, the Aryl Hydrocarbon Receptor (AhR) pathway, and on the expression and activity of different biotransformation enzymes (CYP2M1, GST, FMO1, or cholinesterases (ChEs)). In contrast to PXR, the expression of AhR, and its target gene CYP1A, are reduced upon CPF exposure. Furthermore, ChE and CYP1A activities are significantly inhibited by CPF, in both the intestine and the liver. CPF activates the PXR pathway in O. mykiss in the intestine and liver, with a more profound effect in the intestine. Likewise, our results support regulatory crosstalk between PXR and AhR pathways, where the induction of PXR coincides with the downregulation of AhR-mediated CYP1A mRNA expression and activity in the intestine.


Assuntos
Clorpirifos , Inseticidas , Oncorhynchus mykiss , Animais , Clorpirifos/toxicidade , Inseticidas/toxicidade , Fígado , Oncorhynchus mykiss/genética , Receptor de Pregnano X/genética , Receptores de Hidrocarboneto Arílico/genética
5.
Ecotoxicol Environ Saf ; 204: 111069, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32758696

RESUMO

We studied the absorption, cytotoxicity and oxidative stress markers of Paralytic Shellfish Toxins (PST) from three extracts from Alexandrium catenella and A. ostenfeldii, in middle Oncorhynchus mykiss intestine in vitro and ex vivo preparations. We measured glutathione (GSH) content, glutathione-S transferase (GST), glutathione reductase (GR) and catalase (CAT) enzymatic activity, and lipid peroxidation in isolated epithelium exposed to 0.13 and 1.3 µM PST. ROS production and lysosomal membrane stability (as neutral red retention time 50%, NRRT50) were analyzed in isolated enterocytes exposed to PST alone or plus 3 µM of the ABCC transport inhibitor MK571. In addition, the concentration-dependent effects of PST on NRRT50 were assayed in a concentration range from 0 to 1.3 µM PST. We studied the effects of three different PST extracts on the transport rate of the ABCC substrate DNP-SG by isolated epithelium. The extract with highest inhibition capacity was selected for studying polarized DNP-SG transport in everted and non-everted intestinal segments. We registered lower GSH content and GST activity, and higher GR activity, with no significant changes in CAT activity, lipid peroxidation or ROS level. PST exposure decreased NRRT50 in a concentration-depend manner (IC50 = 0.0045 µM), but PST effects were not augmented by addition of MK571. All the three PST extracts inhibited ABCC transport activity, but this inhibition was effective only when the toxins were applied to the apical side of the intestine and DNP-SG transport was measured at the basolateral side. Our results indicate that PST are absorbed by the enterocytes from the intestine lumen. Inside the enterocytes, these toxins decrease GSH content and inhibit the basolateral ABCC transporters affecting the normal functions of the cell. Furthermore, PST produce a strong cytotoxic effect to the enterocytes by damaging the lysosomal membrane, even at low, non-neurotoxic concentrations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Glutationa/análogos & derivados , Mucosa Intestinal/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Oncorhynchus mykiss/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Saxitoxina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Dinoflagellida/metabolismo , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Mucosa Intestinal/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lisossomos/metabolismo , Frutos do Mar
6.
Artigo em Inglês | MEDLINE | ID: mdl-31301398

RESUMO

In fish of freshwaters environments, the accumulation and toxic effects of arsenite (AsIII) can be attenuated by detoxification proteins such as GST and ABCC transporters. We studied the effects of AsIII on the middle intestine of O. mykiss in ex-vivo and in vivo/ex vivo assays. For the ex vivo assays, we measured the transport rate of the ABCC substrate DNP-SG and GST activity in intestinal strips and everted sacs. AsIII inhibited DNP-SG transport in a concentration-dependent manner, specifically when we applied it on the basolateral side. GST activity increased when we applied a maximum concentration of AsIII. For the in vivo/ex vivo assays, we kept fish in water with or without 7.7 µmol L-1 of AsIII for 48 h. Then, we measured DNP-SG transport rate, GST activity, and PP1 activity in intestine strips during one hour. For PP1 activity, we incubated the strips with or without microcystin-LR (MCLR), a toxin excreted through ABCC2 proteins. We also analyzed Abcc2 and Gst-π mRNA expression in intestine and liver tissue. In the group exposed in vivo to AsIII, DNP-SG transport rate and GST activity were higher and the effect of MCLR over PP1 activity was attenuated. AsIII significantly induced only Abcc2 mRNA expression in both middle intestine and liver. Our results suggest that, in the middle intestine of O. mykiss, AsIII is absorbed mainly at the basolateral side of the enterocytes, excreted to the lumen by ABCC2 transporters, and is capable of modulating Abcc2 mRNA expression by a transcriptional mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arsenitos , Glutationa S-Transferase pi/metabolismo , Intestinos/enzimologia , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Arsenitos/metabolismo , Arsenitos/farmacocinética , Arsenitos/toxicidade , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro , Xenobióticos/metabolismo , Xenobióticos/farmacocinética , Xenobióticos/toxicidade
7.
Aquat Toxicol ; 178: 106-17, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27474942

RESUMO

Accumulation and toxicity of cyanobacterial toxins, particularly microcystin-LR (MCLR) have been extensively studied in fish and aquatic invertebrates. However, MCLR excretion mechanisms, which could reduce this toxin's effects, have received little attention. The Patagonian silverside, Odontesthes hatcheri, is an omnivorous-planktivorous edible fish, which has been shown to digest cyanobacterial cells absorbing MCLR and eliminating the toxin within 48h without suffering significant toxic effects. We studied the effects of MCLR on glycoconjugate composition and the possible role of multidrug resistance associated proteins (Abcc) in MCLR export from the cells in O. hatcheri intestine. We treated O. hatcheri with 5µg MCLRg(-1) body mass administered with the food. Twenty four hours later, the intestines of treated and control fish were processed for lectin-histochemistry using concanavalin A (ConA), Triticum vulgaris agglutinin (WGA), and Dolichos biflorus agglutinin (DBA). MCLR affected the distribution of glycoconjugates by augmenting the proportion of ConA-positive at the expense of WGA-positive cells. We studied MCLR effects on the transport of the Abcc-like substrates 2,4-dinitrophenyl-S-glutathione (DNP-SG) and calcein in ex vivo intestine preparations (everted and no-everted sacs and strips). In treated preparations, CDNB together with MCLR (113µg MCLRg(-1) intestine, equivalent to 1.14µmolL(-1) when applied in the bath) or the Abcc inhibitor, MK571 was applied for one hour, during which DNP-SG was measured in the bath every 10min in order to calculate mass-specific DNP-SG transport rate. MCLR significantly inhibited DNP-SG transport (p<0.05), especially in middle intestine (47 and 24%, for luminal and serosal transport, respectively). In middle intestine strips, MCLR and MK571inhibited DNP-SG transport in a concentration dependent fashion (IC50 3.3 and 0.6µmolL(-1), respectively). In middle intestine strips incubated with calcein-AM (0.25µmolL(-1)), calcein efflux was inhibited by MCLR (2.3µmolL(-1)) and MK571 (3µmolL(-1)) by 38 and 27%, respectively (p<0.05). Finally, middle intestine segments were incubated with different concentrations of MCLR applied alone or together with 3µM MK571. After one hour, protein phosphatase 1 (PP1) activity, the main target of MCLR, was measured. 2.5µM MCLR did not produce any significant effect, while the same amount plus MK571 inhibited PP1 activity (p<0.05). This effect was similar to that of 5µM MCLR. Our results suggest that in O. hatcheri enterocytes MCLR is conjugated with GSH via GST and then exported to the intestinal lumen through Abcc-like transporters. This mechanism would protect the cell from MCLR toxicity, limiting toxin transport into the blood, which is probably mediated by basolateral Abccs. From an ecotoxicological point of view, elimination of MCLR through this mechanism would reduce the amount of toxin available for trophic transference.


Assuntos
Transporte Biológico/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Microcistinas/toxicidade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Smegmamorpha/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Concanavalina A/metabolismo , Fluoresceínas/metabolismo , Glutationa/metabolismo , Glicosilação/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Toxinas Marinhas , Microscopia de Fluorescência , Lectinas de Plantas/metabolismo , Propionatos/toxicidade , Quinolinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA