Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Microbiol ; 9(5): 1244-1255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649414

RESUMO

Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Lipopolissacarídeos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Lipopolissacarídeos/metabolismo , Animais , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Camundongos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Testes de Sensibilidade Microbiana , Humanos , Microscopia Crioeletrônica , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Modelos Animais de Doenças , Feminino , Transportadores de Cassetes de Ligação de ATP
2.
J Med Chem ; 67(5): 3400-3418, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38387069

RESUMO

The use of ß-lactam (BL) and ß-lactamase inhibitor combination to overcome BL antibiotic resistance has been validated through clinically approved drug products. However, unmet medical needs still exist for the treatment of infections caused by Gram-negative (GN) bacteria expressing metallo-ß-lactamases. Previously, we reported our effort to discover pan inhibitors of three main families in this class: IMP, VIM, and NDM. Herein, we describe our work to improve the GN coverage spectrum in combination with imipenem and relebactam. This was achieved through structure- and property-based optimization to tackle the GN cell penetration and efflux challenges. A significant discovery was made that inhibition of both VIM alleles, VIM-1 and VIM-2, is essential for broad GN coverage, especially against VIM-producing P. aeruginosa. In addition, pharmacokinetics and nonclinical safety profiles were investigated for select compounds. Key findings from this drug discovery campaign laid the foundation for further lead optimization toward identification of preclinical candidates.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Humanos , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Inibidores de beta-Lactamases/química , Antibacterianos/química , Imipenem/farmacologia , beta-Lactamases , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
3.
J Med Chem ; 65(24): 16234-16251, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36475645

RESUMO

With the emergence and rapid spreading of NDM-1 and existence of clinically relevant VIM-1 and IMP-1, discovery of pan inhibitors targeting metallo-beta-lactamases (MBLs) became critical in our battle against bacterial infection. Concurrent with our fragment and high-throughput screenings, we performed a knowledge-based search of known metallo-beta-lactamase inhibitors (MBLIs) to identify starting points for early engagement of medicinal chemistry. A class of compounds exemplified by 11, discovered earlier as B. fragilis metallo-beta-lactamase inhibitors, was selected for in silico virtual screening. From these efforts, compound 12 was identified with activity against NDM-1 only. Initial exploration on metal binding design followed by structure-guided optimization led to the discovery of a series of compounds represented by 23 with a pan MBL inhibition profile. In in vivo studies, compound 23 in combination with imipenem (IPM) robustly lowered the bacterial burden in a murine infection model and became the lead for the invention of MBLI clinical candidates.


Assuntos
Infecções Bacterianas , Inibidores de beta-Lactamases , Animais , Camundongos , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Inibidores de beta-Lactamases/química , Imipenem/farmacologia , Imipenem/uso terapêutico , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Testes de Sensibilidade Microbiana
4.
Antimicrob Agents Chemother ; 66(5): e0179021, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35435707

RESUMO

Multidrug-resistant (MDR) Pseudomonas aeruginosa infections are a major clinical challenge. Many isolates are carbapenem resistant, which severely limits treatment options; thus, novel therapeutic combinations, such as imipenem-relebactam (IMI/REL), ceftazidime-avibactam (CAZ/AVI), ceftolozane-tazobactam (TOL/TAZO), and meropenem-vaborbactam (MEM/VAB) were developed. Here, we studied two extensively drug-resistant (XDR) P. aeruginosa isolates, collected in the United States and Mexico, that demonstrated resistance to IMI/REL. Whole-genome sequencing (WGS) showed that both isolates contained acquired GES ß-lactamases, intrinsic PDC and OXA ß-lactamases, and disruptions in the genes encoding the OprD porin, thereby inhibiting uptake of carbapenems. In one isolate (ST17), the entire C terminus of OprD deviated from the expected amino acid sequence after amino acid G388. In the other (ST309), the entire oprD gene was interrupted by an ISPa1328 insertion element after amino acid D43, rendering this porin nonfunctional. The poor inhibition by REL of the GES ß-lactamases (GES-2, -19, and -20; apparent Ki of 19 ± 2 µM, 23 ± 2 µM, and 21 ± 2 µM, respectively) within the isolates also contributed to the observed IMI/REL-resistant phenotype. Modeling of REL binding to the active site of GES-20 suggested that the acylated REL is positioned in an unstable conformation as a result of a constrained Ω-loop.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Aminoácidos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Combinação de Medicamentos , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade Microbiana , Porinas/genética , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Estados Unidos , beta-Lactamases/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(43): 21748-21757, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591200

RESUMO

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the ß-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Triazinas/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico/fisiologia , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana
6.
BMC Microbiol ; 19(1): 150, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272373

RESUMO

BACKGROUND: The prevalence of antibiotic resistance is increasing, and multidrug-resistant Pseudomonas aeruginosa has been identified as a serious threat to human health. The production of ß-lactamase is a key mechanism contributing to imipenem resistance in P. aeruginosa. Relebactam is a novel ß-lactamase inhibitor, active against class A and C ß-lactamases, that has been shown to restore imipenem susceptibility. In a series of studies, we assessed the interaction of relebactam with key mechanisms involved in carbapenem resistance in P. aeruginosa and to what extent relebactam might overcome imipenem non-susceptibility. RESULTS: Relebactam demonstrated no intrinsic antibacterial activity against P. aeruginosa, had no inoculum effect, and was not subject to efflux. Enzymology studies showed relebactam is a potent (overall inhibition constant: 27 nM), practically irreversible inhibitor of P. aeruginosa AmpC. Among P. aeruginosa clinical isolates from the SMART global surveillance program (2009, n = 993; 2011, n = 1702; 2015, n = 5953; 2016, n = 6165), imipenem susceptibility rates were 68.4% in 2009, 67.4% in 2011, 70.4% in 2015, and 67.3% in 2016. With the addition of 4 µg/mL relebactam, imipenem susceptibility rates increased to 87.6, 86.0, 91.7, and 89.8%, respectively. When all imipenem-non-susceptible isolates were pooled, the addition of 4 µg/mL relebactam reduced the mode imipenem minimum inhibitory concentration (MIC) 8-fold (from 16 µg/mL to 2 µg/mL) among all imipenem-non-susceptible isolates. Of 3747 imipenem-non-susceptible isolates that underwent molecular profiling, 1200 (32%) remained non-susceptible to the combination imipenem/relebactam (IMI/REL); 42% of these encoded class B metallo-ß-lactamases, 11% encoded a class A GES enzyme, and no class D enzymes were detected. No relationship was observed between alleles of the chromosomally-encoded P. aeruginosa AmpC and IMI/REL MIC. CONCLUSIONS: IMI/REL exhibited potential in the treatment of carbapenem-resistant P. aeruginosa infections, with the exception of isolates encoding class B, some GES alleles, and class D carbapenemases.


Assuntos
Compostos Azabicíclicos/farmacologia , Imipenem/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , beta-Lactamases/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 115(28): E6614-E6621, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941590

RESUMO

The outer membrane (OM) of Gram-negative bacteria forms a robust permeability barrier that blocks entry of toxins and antibiotics. Most OM proteins (OMPs) assume a ß-barrel fold, and some form aqueous channels for nutrient uptake and efflux of intracellular toxins. The Bam machine catalyzes rapid folding and assembly of OMPs. Fidelity of OMP biogenesis is monitored by the σE stress response. When OMP folding defects arise, the proteases DegS and RseP act sequentially to liberate σE into the cytosol, enabling it to activate transcription of the stress regulon. Here, we identify batimastat as a selective inhibitor of RseP that causes a lethal decrease in σE activity in Escherichia coli, and we further identify RseP mutants that are insensitive to inhibition and confer resistance. Remarkably, batimastat treatment allows the capture of elusive intermediates in the OMP biogenesis pathway and offers opportunities to better understand the underlying basis for σE essentiality.


Assuntos
Proteínas da Membrana Bacteriana Externa , Endopeptidases , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana , Desdobramento de Proteína , Fatores de Transcrição , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo
8.
PLoS One ; 12(7): e0180965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700746

RESUMO

To combat the threat of antibiotic-resistant Gram-negative bacteria, novel agents that circumvent established resistance mechanisms are urgently needed. Our approach was to focus first on identifying bioactive small molecules followed by chemical lead prioritization and target identification. Within this annotated library of bioactives, we identified a small molecule with activity against efflux-deficient Escherichia coli and other sensitized Gram-negatives. Further studies suggested that this compound inhibited DNA replication and selection for resistance identified mutations in a subunit of E. coli DNA gyrase, a type II topoisomerase. Our initial compound demonstrated weak inhibition of DNA gyrase activity while optimized compounds demonstrated significantly improved inhibition of E. coli and Pseudomonas aeruginosa DNA gyrase and caused cleaved complex stabilization, a hallmark of certain bactericidal DNA gyrase inhibitors. Amino acid substitutions conferring resistance to this new class of DNA gyrase inhibitors reside exclusively in the TOPRIM domain of GyrB and are not associated with resistance to the fluoroquinolones, suggesting a novel binding site for a gyrase inhibitor.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Domínios Proteicos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia
9.
Science ; 357(6350): 507-511, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28705990

RESUMO

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722-mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/induzido quimicamente , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Imidazóis/farmacologia , Piridinas/farmacologia , Animais , Benzimidazóis , Glicemia/efeitos dos fármacos , Jejum , Glicogênio/metabolismo , Hipoglicemia/induzido quimicamente , Imidazóis/efeitos adversos , Imidazóis/química , Insulina/farmacologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Piridinas/efeitos adversos , Piridinas/química
10.
ACS Chem Biol ; 12(5): 1346-1352, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28323406

RESUMO

The growing prevalence of drug resistant bacteria is a significant global threat to human health. The antibacterial drug rifampin, which functions by inhibiting bacterial RNA polymerase (RNAP), is an important part of the antibacterial armamentarium. Here, in order to identify novel inhibitors of bacterial RNAP, we used affinity-selection mass spectrometry to screen a chemical library for compounds that bind to Escherichia coli RNAP. We identified a novel small molecule, MRL-436, that binds to RNAP, inhibits RNAP, and exhibits antibacterial activity. MRL-436 binds to RNAP through a binding site that differs from the rifampin binding site, inhibits rifampin-resistant RNAP derivatives, and exhibits antibacterial activity against rifampin-resistant strains. Isolation of mutants resistant to the antibacterial activity of MRL-436 yields a missense mutation in codon 622 of the rpoC gene encoding the RNAP ß' subunit or a null mutation in the rpoZ gene encoding the RNAP ω subunit, confirming that RNAP is the functional cellular target for the antibacterial activity of MRL-436, and indicating that RNAP ß' subunit residue 622 and the RNAP ω subunit are required for the antibacterial activity of MRL-436. Similarity between the resistance determinant for MRL-436 and the resistance determinant for the cellular alarmone ppGpp suggests a possible similarity in binding site and/or induced conformational state for MRL-436 and ppGpp.


Assuntos
Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Farmacorresistência Bacteriana/efeitos dos fármacos , Sítios de Ligação , Farmacorresistência Bacteriana/genética , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Espectrometria de Massas , Ligação Proteica , Rifampina/farmacologia , Bibliotecas de Moléculas Pequenas
11.
Chem Biol ; 22(10): 1362-73, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26456734

RESUMO

Resistance to existing classes of antibiotics drives the need for discovery of novel compounds with unique mechanisms of action. Nargenicin A1, a natural product with limited antibacterial spectrum, was rediscovered in a whole-cell antisense assay. Macromolecular labeling in both Staphylococcus aureus and an Escherichia coli tolC efflux mutant revealed selective inhibition of DNA replication not due to gyrase or topoisomerase IV inhibition. S. aureus nargenicin-resistant mutants were selected at a frequency of ∼1 × 10(-9), and whole-genome resequencing found a single base-pair change in the dnaE gene, a homolog of the E. coli holoenzyme α subunit. A DnaE single-enzyme assay was exquisitely sensitive to inhibition by nargenicin, and other in vitro characterization studies corroborated DnaE as the target. Medicinal chemistry efforts may expand the spectrum of this novel mechanism antibiotic.


Assuntos
DNA Polimerase III/genética , Descoberta de Drogas , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Concentração Inibidora 50 , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacologia , Mutação , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Staphylococcus aureus/efeitos dos fármacos
12.
Nature ; 526(7575): 672-7, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416753

RESUMO

Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.


Assuntos
Pirimidinas/química , Pirimidinas/farmacologia , RNA Bacteriano/química , RNA Bacteriano/efeitos dos fármacos , Riboswitch/efeitos dos fármacos , Animais , Aptâmeros de Nucleotídeos/química , Bactérias/citologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Sequência de Bases , Cristalografia por Raios X , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Mononucleotídeo de Flavina/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Transferases Intramoleculares/genética , Ligantes , Camundongos , Camundongos Endogâmicos DBA , Modelos Moleculares , Dados de Sequência Molecular , Pirimidinas/isolamento & purificação , Pirimidinas/uso terapêutico , RNA Bacteriano/genética , Reprodutibilidade dos Testes , Riboflavina/biossíntese , Riboswitch/genética , Especificidade por Substrato
13.
Bioorg Med Chem Lett ; 24(3): 780-5, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24433862

RESUMO

ß-Lactamase inhibitors with a bicyclic urea core and a variety of heterocyclic side chains were prepared and evaluated as potential partners for combination with imipenem to overcome class A and C ß-lactamase mediated antibiotic resistance. The piperidine analog 3 (MK-7655) inhibited both class A and C ß-lactamases in vitro. It effectively restored imipenem's activity against imipenem-resistant Pseudomonas and Klebsiella strains at clinically achievable concentrations. A combination of MK-7655 and Primaxin® is currently in phase II clinical trials for the treatment of Gram-negative bacterial infections.


Assuntos
Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacologia , Cilastatina/química , Descoberta de Drogas , Inibidores Enzimáticos/química , Imipenem/química , Inibidores de beta-Lactamases , Cilastatina/farmacologia , Combinação Imipenem e Cilastatina , Cristalografia por Raios X , Combinação de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Imipenem/farmacologia , Concentração Inibidora 50 , Klebsiella/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Biológicos , Pseudomonas/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Antimicrob Agents Chemother ; 56(9): 4662-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22710113

RESUMO

The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all ß-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of ß-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to ß-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with ß-lactams by preventing the signal peptidase-mediated secretion of proteins required for ß-lactam resistance. Combinations of SpsB inhibitors and ß-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to ß-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Depsipeptídeos/farmacologia , Glicopeptídeos/farmacologia , Glicosídeos/farmacologia , Lipopeptídeos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oligopeptídeos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , beta-Lactamas/farmacologia , Animais , Antibacterianos/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Compostos de Bifenilo/síntese química , Depsipeptídeos/isolamento & purificação , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Glicopeptídeos/síntese química , Glicopeptídeos/isolamento & purificação , Glicosídeos/isolamento & purificação , Humanos , Lipopeptídeos/isolamento & purificação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Família Multigênica , Oligopeptídeos/síntese química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Infecções Estafilocócicas/microbiologia , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
15.
Chem Biol ; 18(8): 955-65, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21867911

RESUMO

Bacterial resistance to known therapeutics has led to an urgent need for new chemical classes of antibacterial agents. To address this we have applied a Staphylococcus aureus fitness test strategy to natural products screening. Here we report the discovery of kibdelomycin, a novel class of antibiotics produced by a new member of the genus Kibdelosporangium. Kibdelomycin exhibits broad-spectrum, gram-positive antibacterial activity and is a potent inhibitor of DNA synthesis. We demonstrate through chemical genetic fitness test profiling and biochemical enzyme assays that kibdelomycin is a structurally new class of bacterial type II topoisomerase inhibitor preferentially inhibiting the ATPase activity of DNA gyrase and topoisomerase IV. Kibdelomycin is thus the first truly novel bacterial type II topoisomerase inhibitor with potent antibacterial activity discovered from natural product sources in more than six decades.


Assuntos
Actinomycetales/química , Antibacterianos/química , Antibacterianos/farmacologia , Pirróis/química , Pirróis/farmacologia , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/isolamento & purificação , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Pirróis/isolamento & purificação , Pirrolidinonas/isolamento & purificação , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/genética , Inibidores da Topoisomerase II/isolamento & purificação
17.
Bioorg Med Chem Lett ; 20(8): 2622-4, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20299220

RESUMO

4,7-Dichloro-1-benzothien-2-yl sulfonylaminomethyl boronic acid (DSABA, Compound I) was discovered as the first boronic acid-based class D beta-lactamase inhibitor. It exhibited an IC(50) of 5.6 microM against OXA-40. The compound also inhibited class A and C beta-lactamases with sub to low microM IC(50), and synergized with imipenem against Acinetobacter baumannii.


Assuntos
Antibacterianos/farmacologia , Ácidos Borônicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de beta-Lactamases , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Ácidos Borônicos/química , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana
18.
Bioorg Med Chem Lett ; 20(3): 918-21, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20044254
19.
Chem Biol ; 16(8): 837-48, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19716474

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial and community-acquired pathogen for which few existing antibiotics are efficacious. Here we describe two structurally related synthetic compounds that potentiate beta-lactam activity against MRSA. Genetic studies indicate that these agents target SAV1754 based on the following observations: (i) it has a unique chemical hypersensitivity profile, (ii) overexpression or point mutations are sufficient to confer resistance, and (iii) genetic inactivation phenocopies the potentiating effect of these agents in combination with beta-lactams. Further, we demonstrate these agents inhibit peptidoglycan synthesis. Because SAV1754 is essential for growth and structurally related to the recently reported peptidoglycan flippase of Escherichia coli, we speculate it performs an analogous function in S. aureus. These results suggest that SAV1754 inhibitors might possess therapeutic potential alone, or in combination with beta-lactams to restore MRSA efficacy.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Indóis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptidoglicano/química , Piperidinas/farmacologia , Antibacterianos/química , Carbapenêmicos/química , Sinergismo Farmacológico , Indóis/química , Staphylococcus aureus Resistente à Meticilina/genética , Peptidoglicano/metabolismo , Piperidinas/química , Interferência de RNA , RNA Antissenso/metabolismo
20.
Proc Natl Acad Sci U S A ; 104(18): 7612-6, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17456595

RESUMO

Emergence of bacterial resistance is a major issue for all classes of antibiotics; therefore, the identification of new classes is critically needed. Recently we reported the discovery of platensimycin by screening natural product extracts using a target-based whole-cell strategy with antisense silencing technology in concert with cell free biochemical validations. Continued screening efforts led to the discovery of platencin, a novel natural product that is chemically and biologically related but different from platensimycin. Platencin exhibits a broad-spectrum Gram-positive antibacterial activity through inhibition of fatty acid biosynthesis. It does not exhibit cross-resistance to key antibiotic resistant strains tested, including methicillin-resistant Staphylococcus aureus, vancomycin-intermediate S. aureus, and vancomycin-resistant Enterococci. Platencin shows potent in vivo efficacy without any observed toxicity. It targets two essential proteins, beta-ketoacyl-[acyl carrier protein (ACP)] synthase II (FabF) and III (FabH) with IC50 values of 1.95 and 3.91 microg/ml, respectively, whereas platensimycin targets only FabF (IC50 = 0.13 microg/ml) in S. aureus, emphasizing the fact that more antibiotics with novel structures and new modes of action can be discovered by using this antisense differential sensitivity whole-cell screening paradigm.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Aminofenóis/farmacologia , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Policíclicos/farmacologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Aminofenóis/química , Antibacterianos/química , Inibidores Enzimáticos/química , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Compostos Policíclicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA