Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Evol Lett ; 6(4): 284-294, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35937473

RESUMO

The climate is currently warming fast, threatening biodiversity all over the globe. Populations often adapt rapidly to environmental change, but for climate warming very little evidence is available. Here, we investigate the pattern of adaptation to an extreme +10°C climate change in the wild, following the introduction of brine shrimp Artemia franciscana from San Francisco Bay, USA, to Vinh Chau saltern in Vietnam. We use a resurrection ecology approach, hatching diapause eggs from the ancestral population and the introduced population after 13 and 24 years (∼54 and ∼100 generations, respectively). In a series of coordinated experiments, we determined whether the introduced Artemia show increased tolerance to higher temperatures, and the extent to which genetic adaptation, developmental plasticity, transgenerational effects, and local microbiome differences contributed to this tolerance. We find that introduced brine shrimp do show increased phenotypic tolerance to warming. Yet strikingly, these changes do not have a detectable additive genetic component, are not caused by mitochondrial genetic variation, and do not seem to be caused by epigenetic marks set by adult parents exposed to warming. Further, we do not find any developmental plasticity that would help cope with warming, nor any protective effect of heat-tolerant local microbiota. The evolved thermal tolerance might therefore be entirely due to transgenerational (great)grandparental effects, possibly epigenetic marks set by parents who were exposed to high temperatures as juveniles. This study is a striking example of "missing heritability," where a large adaptive phenotypic change is not accompanied by additive genetic effects.

2.
Sci Total Environ ; 800: 149349, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391156

RESUMO

Hypersaline ecosystems are under increasing threat due to anthropogenic pressures such as environmental pollution and biological invasions. Here we address the ecotoxicological implications of the Artemia franciscana (Crustacea) invasion in saltpans of southern Spain. This North American species is causing the extinction of native Artemia populations in many parts of the globe. The bioaccumulation of trace elements (As, Cd, Cu, Co, Cr, Mn, Ni, Pb and Zn) in native populations (A. parthenogenetica) from Cabo de Gata and Odiel saltpans and invasive Artemia from Cádiz saltpan was studied at different salinities. Furthermore, in Odiel, the most polluted study site, we also analysed the bioaccumulation of trace elements by Chironomus salinarius larvae (Diptera) and Ochthebius notabilis adults (Coleoptera). High levels of trace elements were detected in the studied saltpans, many of them exceeding the recommended threshold guidelines for aquatic life. Bioaccumulation of trace elements by Artemia was lowest at the highest salinity. The invasive A. franciscana showed higher potential to bioaccumulate trace elements than its native counterpart (in particular for As, Cd, Ni and Cr). In Odiel, O. notabilis stood out as showing the highest potential to bioaccumulate As and Cu. Results showed that the shift from a native to an alien Artemia species with a higher bioaccumulation capacity may increase the transfer of trace elements in hypersaline food webs, especially for waterbirds that depend on Artemia as food. Thus, our study identifies an indirect impact of the Artemia franciscana invasion that had not previously been recognised.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Animais , Artemia , Bioacumulação , Ecossistema , Monitoramento Ambiental , Espécies Introduzidas , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise
3.
Aquat Toxicol ; 210: 148-157, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30852410

RESUMO

Although a substantial amount of research exists on pollution and biological invasions, there is a paucity of understanding of how both factors interact. Most studies show that pollution favours the establishment of invasive species, but pollution may also promote local adaptation of native species and prevent the establishment of new incomers. However, evidence for this is extremely limited because most studies focus on successful invasions and very few on cases where an invasion has been resisted. Here we provide evidence of local adaptation of native species to pollution combining life history and physiological data. We focused on the invasion of the North American brine shrimp Artemia franciscana, which is causing a dramatic biodiversity loss in hypersaline ecosystems worldwide, and one of the last native Artemia populations in SW Europe (A. parthenogenetica from the historically polluted Odiel estuary, SW Spain). Life table response experiments were carried out in the laboratory to compare the demographic responses of A. parthenogenetica and a nearby A. franciscana population to long-term Zn exposure (0.2 mg L-1). We also evaluated oxidative stress by measuring antioxidant defences (catalase, glutathione reductase and superoxide dismutase) and lipid peroxidation (thiobarbituric acid reactive substances). A high concentration of Zn induced strong mortality in A. franciscana, which also showed high levels of lipid peroxidation, suggesting relatively poor physiological resistance to pollution compared with A. parthenogenetica. The age at maturity was shorter in A. parthenogenetica, which may be an adaptation to the naturally high mortality rate observed in the Odiel population. Exposure to Zn accelerated age at first reproduction in A. franciscana but not in A. parthenogenetica. In contrast, Zn had a stimulatory effect on offspring production in A. parthenogenetica,which also showed higher reproductive parameters (number of broods, total offspring and offspring per brood) than A. franciscana. Overall, the results of this study strongly suggest that native Artemia from Odiel estuary is locally adapted (at both, reproductive and physiological levels) to Zn contamination and that A. franciscana is highly sensitive. This is a good example of how pollution may play a role in the persistence of the last native Artemia populations in the Mediterranean.


Assuntos
Artemia/efeitos dos fármacos , Monitoramento Ambiental/métodos , Espécies Introduzidas , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Artemia/crescimento & desenvolvimento , Ecossistema , Dinâmica Populacional , Espanha
4.
Environ Pollut ; 212: 382-391, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26874320

RESUMO

In situ assays based on feeding depression can be powerful ecotoxicological tools that can link physiological organism-level responses to population and/or community-level effects. Amphipods are traditional target species for toxicity tests due to their high sensitivity to contaminants, availability in the field and ease of handling. However, cost-effective in situ assays based on feeding depression are not yet available for amphipods that inhabit estuarine ecosystems. The aim of this work was to assess a short-term in situ assay based on postexposure feeding rates on easily quantifiable food items with an estuarine amphipod. Experiments were carried out under laboratory conditions using juvenile Echinogammarus marinus as the target individual. When 60 Artemia franciscana nauplii (as prey) were provided per individual for a period of 30 min in dark conditions, feeding rates could be easily quantified. As an endpoint, postexposure feeding inhibition in E. marinus was more sensitive to cadmium contamination than mortality. Assay calibration under field conditions demonstrated the relevance of sediment particle size in explaining individual feeding rates in uncontaminated water bodies. An evaluation of the 48-h in situ bioassay based on postexposure feeding rates indicated that it is able to discriminate between unpolluted and polluted estuarine sites. Using the harmonized protocol described here, the in situ postexposure feeding assay with E. marinus was found to be a potentially useful, cost-effective tool for assessing estuarine sediment and water quality.


Assuntos
Cádmio/toxicidade , Exposição Ambiental , Monitoramento Ambiental , Estuários , Comportamento Alimentar/efeitos dos fármacos , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Anfípodes , Animais , Comportamento Animal/efeitos dos fármacos , Bioensaio , Ecossistema , Sedimentos Geológicos/análise , Espanha , Testes de Toxicidade/métodos , Poluentes Químicos da Água/análise
5.
Environ Res ; 137: 222-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25576796

RESUMO

Post-exposure bioassays are used in environmental assessment as a cost-effective tool, but the effects of organism's recovery after exposure to pollutant has not yet been addressed in detail. The recoveries of post-exposure feeding rates after being exposed to two sublethal concentrations of cadmium during two different exposure periods (48h and 96h) were evaluated under laboratory conditions using the estuarine isopod Cyathura carinata. Results showed that feeding depression was a stable endpoint up to 24h after cadmium exposure, which is useful for ecotoxicological bioassays.


Assuntos
Cádmio/toxicidade , Ecotoxicologia/normas , Isópodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Comportamento Alimentar/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA