Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
iScience ; 27(6): 109835, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799576

RESUMO

Virucidal filter materials were prepared by electrospinning a solution of 28 wt % poly(vinylidene difluoride) in N,N-dimethylacetamide without and with the addition of 0.25 wt %, 0.75 wt %, 2.0 wt %, or 3.5 wt % Cu(NO3)2 · 2.5H2O as virucidal agent. The fabricated materials had a uniform and defect free fibrous structure and even distribution of copper nanoclusters. X-ray diffraction analysis showed that during the electrospinning process, Cu(NO3)2 · 2.5H2O changed into Cu2(NO3)(OH)3. Electrospun filter materials obtained by electrospinning were essentially macroporous. Smaller pores of copper nanoclusters containing materials resulted in higher particle filtration than those without copper nanoclusters. Electrospun filter material fabricated with the addition of 2.0 wt % and 3.5 wt % of Cu(NO3)2 · 2.5H2O in a spinning solution showed significant virucidal activity, and there was 2.5 ± 0.35 and 3.2 ± 0.30 logarithmic reduction in the concentration of infectious SARS-CoV-2 within 12 h, respectively. The electrospun filter materials were stable as they retained virucidal activity for three months.

2.
ACS Appl Energy Mater ; 7(9): 4076-4087, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38756864

RESUMO

The use of precious metal electrocatalysts in clean electrochemical energy conversion and storage applications is widespread, but the sustainability of these materials, in terms of their availability and cost, is constrained. In this research, iron triad-based bimetallic nitrogen-doped carbon (M-N-C) materials were investigated as potential bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The synthesis of bimetallic FeCo-N-C, CoNi-N-C, and FeNi-N-C catalysts involved a precisely optimized carbonization process of their respective metal-organic precursors. Comprehensive structural analysis was undertaken to elucidate the morphology of the prepared M-N-C materials, while their electrocatalytic performance was assessed through cyclic voltammetry and rotating disk electrode measurements in a 0.1 M KOH solution. All bimetallic catalyst materials demonstrated impressive bifunctional electrocatalytic performance in both the ORR and the OER. However, the FeNi-N-C catalyst proved notably more stable, particularly in the OER conditions. Employed as a bifunctional catalyst for ORR/OER within a customized zinc-air battery, FeNi-N-C exhibited a remarkable discharge-charge voltage gap of only 0.86 V, alongside a peak power density of 60 mW cm-2. The outstanding stability of FeNi-N-C, operational for about 55 h at 2 mA cm-2, highlights its robustness for prolonged application.

3.
Nucleic Acids Res ; 49(7): e38, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33444445

RESUMO

In vivo phage display is widely used for identification of organ- or disease-specific homing peptides. However, the current in vivo phage biopanning approaches fail to assess biodistribution of specific peptide phages across tissues during the screen, thus necessitating laborious and time-consuming post-screening validation studies on individual peptide phages. Here, we adopted bioinformatics tools used for RNA sequencing for analysis of high-throughput sequencing (HTS) data to estimate the representation of individual peptides during biopanning in vivo. The data from in vivo phage screen were analyzed using differential binding-relative representation of each peptide in the target organ versus in a panel of control organs. Application of this approach in a model study using low-diversity peptide T7 phage library with spiked-in brain homing phage demonstrated brain-specific differential binding of brain homing phage and resulted in identification of novel lung- and brain-specific homing peptides. Our study provides a broadly applicable approach to streamline in vivo peptide phage biopanning and to increase its reproducibility and success rate.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Ensaios de Triagem em Larga Escala/métodos , Biblioteca de Peptídeos , Peptídeos/metabolismo , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
4.
ACS Catal ; 11(4): 1920-1931, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35028188

RESUMO

Transition-metal- and nitrogen-codoped carbide-derived carbon/carbon nanotube composites (M-N-CDC/CNT) have been prepared, characterized, and used as cathode catalysts in anion-exchange membrane fuel cells (AEMFCs). As transition metals, cobalt, iron, and a combination of both have been investigated. Metal and nitrogen are doped through a simple high-temperature pyrolysis technique with 1,10-phenanthroline as the N precursor. The physicochemical characterization shows the success of metal and nitrogen doping as well as very similar morphologies and textural properties of all three composite materials. The initial assessment of the oxygen reduction reaction (ORR) activity, employing the rotating ring-disk electrode method, indicates that the M-N-CDC/CNT catalysts exhibit a very good electrocatalytic performance in alkaline media. We find that the formation of HO2 - species in the ORR catalysts depends on the specific metal composition (Co, Fe, or CoFe). All three materials show excellent stability with a negligible decline in their performance after 10000 consecutive potential cycles. The very good performance of the M-N-CDC/CNT catalyst materials is attributed to the presence of M-N x and pyridinic-N moieties as well as both micro- and mesoporous structures. Finally, the catalysts exhibit excellent performance in in situ tests in H2/O2 AEMFCs, with the CoFe-N-CDC/CNT reaching a current density close to 500 mA cm-2 at 0.75 V and a peak power density (P max) exceeding 1 W cm-2. Additional tests show that P max reaches 0.8 W cm-2 in an H2/CO2-free air system and that the CoFe-N-CDC/CNT material exhibits good stability under both AEMFC operating conditions.

5.
J Colloid Interface Sci ; 584: 263-274, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069025

RESUMO

Highly active electrocatalysts for electrochemical oxygen reduction reaction (ORR) were prepared by high-temperature pyrolysis from 5-methylresorcinol, Co and/or Fe salts and dicyandiamide, which acts simultaneously as a precursor for reactive carbonitride template and a nitrogen source. The electrocatalytic activity of the catalysts for ORR in alkaline solution was studied using the rotating disc electrode (RDE) method. The bimetallic catalyst containing iron and cobalt (FeCoNC-at) showed excellent stability and remarkable ORR performance, comparable to that of commercial Pt/C (20 wt%). The superior activity was attributed to high surface metal and nitrogen contents. The FeCoNC-at catalyst was further tested in anion exchange membrane fuel cell (AEMFC) with poly-(hexamethyl-p-terphenylbenzimidazolium) (HMT-PMBI) membrane, where a high value of peak power density (Pmax = 415 mW cm-2) was achieved.

6.
J Fish Biol ; 97(5): 1582-1585, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32880933

RESUMO

For the first time, an overlooked aspect of partial migration was quantified using otolith microchemistry and brown trout, Salmo trutta, as a model species. Relative contributions of freshwater resident and anadromous female brown trout to mixed-stock sea trout populations in the Baltic Sea were estimated. Out of 236 confirmed wild sea trout sampled around the coast of Estonia 88% were of anadromous maternal origin and 12% were of resident maternal origin. This novel finding underscores the importance of the resident contingent in maintaining the persistence and resilience of the migratory contingent.


Assuntos
Migração Animal/fisiologia , Microquímica , Membrana dos Otólitos/química , Truta/fisiologia , Animais , Estônia , Feminino , Água Doce
7.
J Neurochem ; 153(3): 346-361, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31792980

RESUMO

Melanocortin-4 receptors (MC4 R) are unique among G-protein-coupled receptors (GPCRs) as they have endogenous ligands that can exhibit inverse agonistic properties in the case of elevated basal activity. It is known that the constitutive activity of GPCRs strongly affects the ligand-dependent physiological responses, but little is known about these regulatory mechanisms. Since several metal ions have been shown to be important modulators of the signal transduction of GPCRs, we hypothesized that metal ions regulate the basal activity of MC4 Rs. Implementation of a fluorescence anisotropy assay and novel redshifted fluorescent peptides enabled kinetic characterization of ligand binding to MC4 R expressed on budded baculoviruses. We show that Ca2+ is required for high-affinity ligand binding, but Zn2+ and Cu2+ in the presence of Ca2+ behave as negative allosteric modulators of ligand binding to MC4 R. FRET-based cAMP biosensor was used to measure the activation of MC4 R stably expressed in CHO-K1 cells. At low micromolar concentrations, Zn2+ caused MC4 R-dependent activation of the cAMP pathway, whereas Cu2+ reduced the activity of MC4 R even below the basal level. These findings indicate that at physiologically relevant concentrations can Zn2+ and Cu2+ function as MC4 R agonists or inverse agonists, respectively. This means that depending on the level of constitutive activity induced by Zn2+ ions, the pharmacological effect of orthosteric ligands of MC4 R can be switched from a partial to an inverse agonist. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Science badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Cobre/metabolismo , AMP Cíclico/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/fisiologia , Zinco/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células CHO , Cobre/farmacologia , Cricetinae , Cricetulus , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptor Tipo 4 de Melanocortina/química , Células Sf9 , Transdução de Sinais/efeitos dos fármacos , Zinco/farmacologia
8.
Biomaterials ; 219: 119373, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31374479

RESUMO

Oncofetal fibronectin (FN-EDB) and tenascin-C C domain (TNC-C) are nearly absent in extracellular matrix of normal adult tissues but upregulated in malignant tissues. Both FN-EDB and TNC-C are developed as targets of antibody-based therapies. Here we used peptide phage biopanning to identify a novel targeting peptide (PL1, sequence: PPRRGLIKLKTS) that interacts with both FN-EDB and TNC-C. Systemic PL1-functionalized model nanoscale payloads [iron oxide nanoworms (NWs) and metallic silver nanoparticles] homed to glioblastoma (GBM) and prostate carcinoma xenografts, and to non-malignant angiogenic neovessels induced by VEGF-overexpression. Antibody blockage experiments demonstrated that PL1 tumor homing involved interactions with both receptor proteins. Treatment of GBM mice with PL1-targeted model therapeutic nanocarrier (NWs loaded with a proapoptotic peptide) resulted in reduced tumor growth and increased survival, whereas treatment with untargeted particles had no effect. PL1 peptide may have applications as an affinity ligand for delivery of diagnostic and therapeutic compounds to microenvironment of solid tumors.


Assuntos
Sistemas de Liberação de Medicamentos , Fibronectinas/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Tenascina/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Linhagem Celular Tumoral , Compostos Férricos/química , Glioblastoma/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Camundongos Nus , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Prata/química
9.
J Control Release ; 308: 109-118, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255690

RESUMO

Tumor-selective drug conjugates can potentially improve the prognosis for patients affected by glioblastoma (GBM) - the most common and malignant type of brain cancer with no effective cure. Here we evaluated a novel tumor penetrating peptide that targets cell surface p32, LinTT1 (AKRGARSTA), as a GBM targeting ligand for systemically-administered nanoparticles. LinTT1-functionalization increased tumor homing of iron oxide nanoworms (NWs) across a panel of five GBM models ranging from infiltratively-disseminating to angiogenic phenotypes. LinTT1-NWs homed to CD31-positive tumor blood vessels, including to transdifferentiated endothelial cells, and showed co-localization with tumor macrophages and lymphatic vessels. LinTT1 functionalization also resulted in increased GBM delivery of other types of systemically-administered nanoparticles: silver nanoparticles and albumin-paclitaxel nanoparticles. Finally, LinTT1-guided proapoptotic NWs exerted strong anti-glioma activity in two models of GBM, including doubling the lifespan of the mice in an aggressive orthotopic stem cell-like GBM that recapitulates the histological hallmarks of human GBM. Our study suggests that LinTT1 targeting strategy can be used to increase GBM uptake of systemic nanoparticles for improved imaging and therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Nanopartículas , Peptídeos/administração & dosagem , Albuminas/administração & dosagem , Albuminas/farmacocinética , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Feminino , Compostos Férricos/química , Glioblastoma/patologia , Humanos , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Peptídeos/química , Prata/química , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Total Environ ; 658: 1404-1415, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30678000

RESUMO

Power generation and other industries using solid fossil fuels like coal, lignite, oil shale and peat are responsible for producing large quantities of solid residues that are often chemically reactive and/or unstable and are disposed in holding ponds and deposition sites. Stability and long-term behaviour of such deposits are typically studied in short-term laboratory experiments that cannot describe nor predict long-term changes taking place in these materials. Here, we study long-term (>40 years) transformations, in highly alkaline conditions, of the Ca-rich ash deposit in Estonia composed of oil shale processing residues from the Eesti power plant. Detailed mineralogical, chemical and micromorphological analyses using X-ray diffraction, X-ray fluorescence, 29Si nuclear magnetic resonance, scanning electron microscopy and other methods were applied in order to identify the composition of the waste with a focus on formation and transformation of semicrystalline phases in the deposit. The results show progressive formation of calcium-silicate-hydrate (C-S-H) type phase at the expense of silicate minerals and amorphous glass phases with increasing depth and age of the sediments, from about 25% in the upper part of the depository to over 60% in the oldest-deepest part. This demonstrates that over time the high alkalinity of the ash is responsible for initiating natural alkali-activation. The formation of C-S-H-type phases increases the mechanical strength of the sediment and ensures long-term stability of waste deposits. These findings may encourage the use of these ashes in binder or other construction material production or as construction aggregates.

11.
Sci Total Environ ; 639: 67-74, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29778683

RESUMO

Biochar has shown great potential as an amendment to improve soil quality and promote plant growth, as well as to adsorb pollutants from water. However, information about the effect of biochar on the wastewater treatment efficiency in horizontal subsurface flow (HSSF) constructed wetlands (CWs) is still scarce. In this study, we assessed the effect of biochar amendment on the purification efficiency of pretreated municipal wastewater in planted (Typha latifolia) experimental horizontal subsurface flow filters filled with lightweight expanded clay aggregates (LECA). The addition of wood-derived biochar (10% v/v) to LECA significantly increased plant biomass production and enhanced the wastewater treatment efficiency of the planted filters. Both the aboveground plant biomass and belowground plant biomass were higher (1.9- and 1.5-fold, respectively) in the filters of the LBP (LECA + biochar + plants) treatments compared to the LP (LECA + plants) filters. The water pH was significantly lower in the planted filters (LBP < LP < LB-LECA + biochar). The efficiencies of TN and TP removal from wastewater were highest in the LBP filters (20.0% and 22.5%, respectively), followed by the LP (13.7% and 16.2%, respectively) and LB (9.5% and 15.6%, respectively) filters. More N and P were incorporated into the plant biomass from wastewater in the presence of biochar in the filter medium. The study results confirm that biochar can be an advantageous supplement for planted HSSF CWs to enhance the treatment efficiency of these systems.

12.
Nanoscale ; 9(28): 10094-10100, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28695222

RESUMO

Attaching affinity ligands to nanoparticles (NPs) increases selectivity for targeting cells and tissues, and can result in improved sensitivity and reduced off-target toxicity in diagnostic and therapeutic systems. The decision over key features - NP size, shape, coating strategies and targeting ligands for clinical translation is often hampered by a lack of quantitative in vivo NP homing assays. Sensitive, internally controlled assays are needed which allow for quantitative comparisons (auditions) among various formulations of targeted NPs. We recently reported the development of peptide-functionalized, isotopically-barcoded silver NPs (AgNPs) for ultrasensitive studies centered on measuring relative ratios of NP internalization into cultured cells. Here we evaluated the application of this technology for NP homing studies in live mice using peptides with previously described tissue tropism; one peptide that favors vascular beds of the normal lungs (RPARPAR; receptor neuropilin-1, or NRP-1) and another that is selective for central nervous system vessels (CAGALCY). Equimolar mixtures of the peptide-targeted Ag107-NPs and Ag109 control particles were mixed and injected intravenously. Distribution profiles of Ag107 and Ag109 in tissue extracts were determined simultaneously through inductively coupled plasma mass spectrometry (ICP-MS). Compared to non-targeted particles up to ∼9-fold increased lung accumulation was seen for RPARPAR-OH AgNPs (but not for AgNPs functionalized with RPARPAR-NH2, which does not bind to NRP-1). Similarly, AgNPs functionalized with the brain-homing CAGALCY peptide were overrepresented in brain extracts. Spatial distribution (mapping) analysis by laser ablation ICP-MS (LA-ICP-MS) was used to determine the ratio Ag107/Ag109 in tissue cryosections. The mapping demonstrated preferential accumulation of the RPARPAR-AgNPs in the perivascular areas around pulmonary veins, and CAGALCY AgNPs accumulated in discrete areas of the brain (e.g. in the vessels of cerebellar fibrillary tracts). Based on these results, the internally controlled ratiometric AgNP system is suitable for quantitative studies of the effect of targeting ligands on NP biodistribution, at average tissue concentration and distribution at the microscopic level. The platform might be particularly relevant for target sites with high local variability in uptake, such as tumors.


Assuntos
Nanopartículas Metálicas , Terapia de Alvo Molecular , Prata/farmacocinética , Animais , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Peptídeos/administração & dosagem , Distribuição Tecidual
13.
Nanoscale ; 8(17): 9096-101, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26646247

RESUMO

Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 ± 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 ± 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.


Assuntos
Técnicas Citológicas , Nanopartículas Metálicas , Prata , Linhagem Celular Tumoral , Humanos , Isótopos , Masculino , Peptídeos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA