Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Elife ; 132024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831699

RESUMO

Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.


Assuntos
Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/instrumentação , Criança , Adolescente , Adulto , Adulto Jovem , Masculino , Feminino , Pré-Escolar , Ritmo beta/fisiologia , Encéfalo/fisiologia
2.
Hum Brain Mapp ; 45(7): e26700, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726799

RESUMO

The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.


Assuntos
Magnetoencefalografia , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Adulto , Masculino , Feminino , Adulto Jovem , Cadeias de Markov , Desempenho Psicomotor/fisiologia , Córtex Cerebral/fisiologia , Movimento/fisiologia , Ritmo beta/fisiologia
3.
Neuroimage ; 209: 116537, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935517

RESUMO

Neural oscillations dominate electrophysiological measures of macroscopic brain activity and fluctuations in these rhythms offer an insightful window on cortical excitation, inhibition, and connectivity. However, in recent years the 'classical' picture of smoothly varying oscillations has been challenged by the idea that many 'oscillations' may actually be formed from the recurrence of punctate high-amplitude bursts in activity, whose spectral composition intersects the traditionally defined frequency ranges (e.g. alpha/beta band). This finding offers a new interpretation of measurable brain activity, however neither the methodological means to detect bursts, nor their link to other findings (e.g. connectivity) have been settled. Here, we use a new approach to detect bursts in magnetoencephalography (MEG) data. We show that a time-delay embedded Hidden Markov Model (HMM) can be used to delineate single-region bursts which are in agreement with existing techniques. However, unlike existing techniques, the HMM looks for specific spectral patterns in timecourse data. We characterise the distribution of burst duration, frequency of occurrence and amplitude across the cortex in resting state MEG data. During a motor task we show how the movement related beta decrease and post movement beta rebound are driven by changes in burst occurrence. Finally, we show that the beta band functional connectome can be derived using a simple measure of burst overlap, and that coincident bursts in separate regions correspond to a period of heightened coherence. In summary, this paper offers a new methodology for burst identification and connectivity analysis which will be important for future investigations of neural oscillations.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Neuroimage ; 206: 116288, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654762

RESUMO

Modulation of beta-band neural oscillations during and following movement is a robust marker of brain function. In particular, the post-movement beta rebound (PMBR), which occurs on movement cessation, has been related to inhibition and connectivity in the healthy brain, and is perturbed in disease. However, to realise the potential of the PMBR as a biomarker, its modulation by task parameters must be characterised and its functional role determined. Here, we used MEG to image brain electrophysiology during and after a grip-force task, with the aim to characterise how task duration, in the form of an isometric contraction, modulates beta responses. Fourteen participants exerted a 30% maximum voluntary grip-force for 2, 5 and 10 s. Our results showed that the amplitude of the PMBR is modulated by task duration, with increasing duration significantly reducing PMBR amplitude and increasing its time-to-peak. No variation in the amplitude of the movement related beta decrease (MRBD) with task duration was observed. To gain insight into what may underlie these trial-averaged results, we used a Hidden Markov Model to identify the individual trial dynamics of a brain network encompassing bilateral sensorimotor areas. The rapidly evolving dynamics of this network demonstrated similar variation with task parameters to the 'classical' rebound, and we show that the modulation of the PMBR can be well-described in terms of increased frequency of beta events on a millisecond timescale rather than modulation of beta amplitude during this time period. Our results add to the emerging picture that, in the case of a carefully controlled paradigm, beta modulation can be systematically controlled by task parameters and such control can reveal new information as to the processes that generate the average beta timecourse. These findings will support design of clinically relevant paradigms and analysis pipelines in future use of the PMBR as a marker of neuropathology.


Assuntos
Ritmo beta/fisiologia , Neuroimagem Funcional , Magnetoencefalografia , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Córtex Sensório-Motor/fisiologia , Análise e Desempenho de Tarefas , Adulto , Humanos , Contração Isométrica/fisiologia , Fatores de Tempo
5.
Hum Brain Mapp ; 40(4): 1298-1316, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30430706

RESUMO

Functional MRI at ultra-high field (UHF, ≥7 T) provides significant increases in BOLD contrast-to-noise ratio (CNR) compared with conventional field strength (3 T), and has been exploited for reduced field-of-view, high spatial resolution mapping of primary sensory areas. Applying these high spatial resolution methods to investigate whole brain functional responses to higher-order cognitive tasks leads to a number of challenges, in particular how to perform robust group-level statistical analyses. This study addresses these challenges using an inter-sensory cognitive task which modulates top-down attention at graded levels between the visual and somatosensory domains. At the individual level, highly focal functional activation to the task and task difficulty (modulated by attention levels) were detectable due to the high CNR at UHF. However, to assess group level effects, both anatomical and functional variability must be considered during analysis. We demonstrate the importance of surface over volume normalisation and the requirement of no spatial smoothing when assessing highly focal activity. Using novel group analysis on anatomically parcellated brain regions, we show that in higher cognitive areas (parietal and dorsal-lateral-prefrontal cortex) fMRI responses to graded attention levels were modulated quadratically, whilst in visual cortex and VIP, responses were modulated linearly. These group fMRI responses were not seen clearly using conventional second-level GLM analyses, illustrating the limitations of a conventional approach when investigating such focal responses in higher cognitive regions which are more anatomically variable. The approaches demonstrated here complement other advanced analysis methods such as multivariate pattern analysis, allowing UHF to be fully exploited in cognitive neuroscience.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA