Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 204: 116512, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810504

RESUMO

Antibiotics' widespread and abusive use in aquaculture and livestock leads to extensive environmental dissemination and dispersion, consequently increasing antibiotic-resistant bacteria in marine ecosystems. Hence, there is an increased need for efficient methods for identifying and quantifying antibiotic residues in soils and sediments. From a review of the last 20 years, we propose and compare different chromatographic techniques for detecting and quantifying antibiotics in sediment samples from marine ecosystems, particularly in mangrove forest sediments. The methods typically include three stages: extraction of antibiotics from the solid matrix, cleaning, and concentration of samples before quantification. We address the leading causes of the occurrence of antibiotics in marine ecosystem sediments and analyze the most appropriate methods for each analytical stage. Ultimately, selecting a method for identifying antibiotic residues depends on multiple factors, ranging from the nature and physicochemical properties of the analytes to the availability of the necessary equipment and the available resources.


Assuntos
Antibacterianos , Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água , Áreas Alagadas , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Antibacterianos/análise , Poluentes Químicos da Água/análise , Ecossistema
2.
Arch Microbiol ; 206(4): 173, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492040

RESUMO

Using microalgal growth-promoting bacteria (MGPB) to improve the cultured microalga metabolism during biotechnological processes is one of the most promising strategies to enhance their benefits. Nonetheless, the culture condition effect used during the biotechnological process on MGPB growth and metabolism is key to ensure the expected positive bacterium growth and metabolism of microalgae. In this sense, the present research study investigated the effect of the synthetic biogas atmosphere (75% CH4-25% CO2) on metabolic and physiological adaptations of the MGPB Azospirillum brasilense by a microarray-based transcriptome approach. A total of 394 A. brasilense differentially expressed genes (DEGs) were found: 201 DEGs (34 upregulated and 167 downregulated) at 24 h and 193 DEGs (140 upregulated and 53 downregulated) under the same conditions at 72 h. The results showed a series of A. brasilense genes regulating processes that could be essential for its adaptation to the early stressful condition generated by biogas. Evidence of energy production is shown by nitrate/nitrite reduction and activation of the hypothetical first steps of hydrogenotrophic methanogenesis; signal molecule modulation is observed: indole-3-acetic acid (IAA), riboflavin, and vitamin B6, activation of Type VI secretion system responding to IAA exposure, as well as polyhydroxybutyrate (PHB) biosynthesis and accumulation. Moreover, an overexpression of ipdC, ribB, and phaC genes, encoding the key enzymes for the production of the signal molecule IAA, vitamin riboflavin, and PHB production of 2, 1.5 and 11 folds, respectively, was observed at the first 24 h of incubation under biogas atmosphere Overall, the ability of A. brasilense to metabolically adapt to a biogas atmosphere is demonstrated, which allows its implementation for generating biogas with high calorific values and the use of renewable energies through microalga biotechnologies.


Assuntos
Azospirillum brasilense , Microalgas , Microalgas/genética , Biocombustíveis , Transcriptoma , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica , Adaptação Fisiológica/genética , Riboflavina/genética , Riboflavina/metabolismo
3.
Bioprocess Biosyst Eng ; 47(2): 181-193, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38231212

RESUMO

The present study evaluates the association of the blue-green microalga Arthrospira maxima (Spirulina), which is known for its CO2 fixation, biomass, and high-value metabolite production, with the microalga growth-promoting bacterium Azospirillum brasilense under the stressful composition of biogas. The results demonstrated that A. maxima co-cultured with A. brasilense under the high CO2 (25%) and methane (CH4; 75%) concentrations of biogas recorded a CO2 fixation rate of 0.24 ± 0.03 g L-1 days-1, thereby attaining a biomass production of 1.8 ± 0.03 g L-1. Similarly, the biochemical composition quality of this microalga enhanced the attainment of higher contents of carbohydrates, proteins, and phycocyanin than cultured alone. However, metabolites other than tryptophan (Trp) and indole-3-acetic acid could have supported this beneficial interaction. Overall, the results demonstrate that this prokaryotic consortium of A. maxima-A. brasilense established a synergic association under biogas, which represents a sustainable strategy to improve the bio-refinery capacity of this microalga and increase the usefulness of A. brasilense in multiple economic sectors.


Assuntos
Azospirillum brasilense , Microalgas , Spirulina , Spirulina/metabolismo , Biocombustíveis , Microalgas/metabolismo , Dióxido de Carbono/metabolismo , Azospirillum brasilense/metabolismo
4.
Environ Monit Assess ; 195(12): 1521, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995003

RESUMO

The continuous increment in world population coupled with the greatest natural resource consumption and waste generation has an enormous impact on the environment. To date, using biological indicators (bioindicators) to evaluate the biological quality of natural environments is very common. Nonetheless, selecting those suitable for each ecosystem or contaminant is one of the most important issues for environmental sciences. Bacteria and helminths are mainly related to fecal contamination, while antibiotic-resistant bacteria, fungi, viruses, and microalgae are organisms used to determine deteriorated ecosystems by diverse contaminants. Nowadays, each bioindicator is used as a specific agent of different contaminant types, but detecting and quantifying these bioindicator microorganisms can be performed from simple microscopy and culture methods up to a complex procedure based on omic sciences. Developing new techniques based on the metabolism and physiological responses of traditional bioindicators is shown in a fast environmental sensitivity analysis. Therefore, the present review focuses on analyzing different bioindicators to facilitate developing suitable monitoring environmental systems according to different pollutant agents. The traditional and new methods proposed to detect and quantify different bioindicators are also discussed. Their vital role is considered in implementing efficient ecosystem bioprospection, restoration, and conservation strategies directed to natural resource management.


Assuntos
Ecossistema , Poluentes Ambientais , Biomarcadores Ambientais , Monitoramento Ambiental/métodos
5.
Microb Ecol ; 85(4): 1412-1422, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35524818

RESUMO

The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo-inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A. brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.


Assuntos
Azospirillum brasilense , Chlorella , Microalgas , Simbiose , Exsudatos e Transudatos
6.
Front Plant Sci ; 13: 920881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003821

RESUMO

To ensure food security given the current scenario of climate change and the accompanying ecological repercussions, it is essential to search for new technologies and tools for agricultural production. Microorganism-based biostimulants are recognized as sustainable alternatives to traditional agrochemicals to enhance and protect agricultural production. Marine actinobacteria are a well-known source of novel compounds for biotechnological uses. In addition, former studies have suggested that coral symbiont actinobacteria may support co-symbiotic photosynthetic growth and tolerance and increase the probability of corals surviving abiotic stress. We have previously shown that this activity may also hold in terrestrial plants, at least for the actinobacteria Salinispora arenicola during induced heterologous symbiosis with a wild Solanaceae plant Nicotiana attenuata under in vitro conditions. Here, we further explore the heterologous symbiotic association, germination, growth promotion, and stress relieving activity of S. arenicola in tomato plants under agricultural conditions and dig into the possible associated mechanisms. Tomato plants were grown under normal and saline conditions, and germination, bacteria-root system interactions, plant growth, photosynthetic performance, and the expression of salt stress response genes were analyzed. We found an endophytic interaction between S. arenicola and tomato plants, which promotes germination and shoot and root growth under saline or non-saline conditions. Accordingly, photosynthetic and respective photoprotective performance was enhanced in line with the induced increase in photosynthetic pigments. This was further supported by the overexpression of thermal energy dissipation, which fine-tunes energy use efficiency and may prevent the formation of reactive oxygen species in the chloroplast. Furthermore, gene expression analyses suggested that a selective transport channel gene, SlHKT1,2, induced by S. arenicola may assist in relieving salt stress in tomato plants. The fine regulation of photosynthetic and photoprotective responses, as well as the inhibition of the formation of ROS molecules, seems to be related to the induced down-regulation of other salt stress response genes, such as SlDR1A-related genes or SlAOX1b. Our results demonstrate that the marine microbial symbiont S. arenicola establishes heterologous symbiosis in crop plants, promotes growth, and confers saline stress tolerance. Thus, these results open opportunities to further explore the vast array of marine microbes to enhance crop tolerance and food production under the current climate change scenario.

7.
J Appl Microbiol ; 132(5): 3650-3663, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35233885

RESUMO

AIMS: This study assessed, at the physiological and molecular levels, the effect of biogas on indole-3-acetic acid (IAA) biosynthesis by Azospirillum brasilense as well as the impact of this bacterium during CO2 fixation from biogas by Chlorella vulgaris and Scenedesmus obliquus. METHODS AND RESULTS: IpdC gene expression, IAA production and the growth of A. brasilense cultured under air (control) and biogas (treatment) were evaluated. The results demonstrated that A. brasilense had a better growth capacity and IAA production (105.7 ± 10.3 µg ml-1 ) when cultured under biogas composed of 25% CO2  + 75% methane (CH4 ) with respect to the control (72.4 ± 7.9 µg ml-1 ), although the ipdC gene expression level was low under the stressful condition generated by biogas. Moreover, this bacterium was able to induce a higher cell density and CO2 fixation rate from biogas by C. vulgaris (0.27 ± 0.08 g l-1 d-1 ) and S. obliquus (0.22 ± 0.08 g l-1 d-1 ). CONCLUSIONS: This study demonstrated that A. brasilense has the capacity to grow and actively maintain its main microalgal growth-promoting mechanism when cultured under biogas and positively influence CO2 fixation from the biogas of C. vulgaris and S. obliquus. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings broaden research in the field of Azospirillum-microalga interactions and the prevalence of Azospirillum in environmental and ecological topics in addition to supporting the uses of plant growth-promoting bacteria to enhance biotechnological strategies for biogas upgrading.


Assuntos
Azospirillum brasilense , Chlorella vulgaris , Microalgas , Atmosfera , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Biocombustíveis , Dióxido de Carbono/metabolismo , Chlorella vulgaris/metabolismo , Ácidos Indolacéticos/metabolismo , Microalgas/metabolismo
8.
Antibiotics (Basel) ; 10(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572685

RESUMO

Multidrug-resistant bacteria and antibiotic resistance genes can be monitored as indicators of contamination in several environments. Mangroves are among the most productive ecosystems, and although they can be resilient to the action of climate phenomena, their equilibrium can be affected by anthropogenic activities. Regarding the presence and persistence of multidrug-resistant bacteria in mangroves, it is common to think that this ecosystem can function as a reservoir, which can disperse the antibiotic resistance capacity to human pathogens, or serve as a filter to eliminate drug-resistant genes. The possible impact of anthropogenic activities carried out near mangroves is reviewed, including wastewater treatment, food production systems, leisure, and tourism. Adverse effects of antibiotic resistance genes or multidrug-resistant bacteria, considered as emerging contaminants, have not been reported yet in mangroves. On the contrary, mangrove ecosystems can be a natural way to eliminate antibiotics, antibiotic-resistant bacteria, and even antibiotic-resistant genes from the environment. Although mangroves' role in decreasing antibiotics and antibiotic resistance genes from the environment is being proposed, the mechanisms by which these plants reduce these emerging contaminants have not been elucidated and need further studies. Additionally, further evaluation is needed on the effects of antibiotics and antibiotic-resistant bacteria in mangroves to generate an analysis of the human contribution to the degradation of this specific ecosystem as well as to define if these contaminants can be used as indicators of contamination in mangrove ecosystems.

9.
Microb Ecol ; 77(4): 980-992, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30397795

RESUMO

The effect of three different nutritional conditions during the initial 12 h of interaction between the microalgae Chlorella sorokiniana UTEX 2714 and the plant growth-promoting bacterium Azospirillum brasilense Cd on formation of synthetic mutualism was assessed by changes in population growth, production of signal molecules tryptophan and indole-3-acetic acid, starch accumulation, and patterns of cell aggregation. When the interaction was supported by a nutrient-rich medium, production of both signal molecules was detected, but not when this interaction began with nitrogen-free (N-free) or carbon-free (C-free) media. Overall, populations of bacteria and microalgae were larger when co-immobilized. However, the highest starch production was measured in C. sorokiniana immobilized alone and growing continuously in a C-free mineral medium. In this interaction, the initial nutritional condition influenced the time at which the highest accumulation of starch occurred in Chlorella, where the N-free medium induced faster starch production and the richer medium delayed its accumulation. Formation of aggregates made of microalgae and bacteria occurred in all nutritional conditions, with maximum at 83 h in mineral medium, and coincided with declining starch content. This study demonstrates that synthetic mutualism between C. sorokiniana and A. brasilense can be modulated by the initial nutritional condition, mainly by the presence or absence of nitrogen and carbon in the medium in which they are interacting.


Assuntos
Azospirillum brasilense/fisiologia , Chlorella/fisiologia , Simbiose , Ácidos Indolacéticos/metabolismo , Microalgas/fisiologia , Crescimento Demográfico , Amido/metabolismo , Triptofano/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-28869549

RESUMO

Reclaimed wastewater for irrigation is an opportunity for recovery of this natural resource. In this study, microbial risk from the use of treated wastewater for irrigation of recreational parks in the city of Chihuahua, evaluating the effect of distribution distance, season, and presence of storage tanks, was analyzed. Escherichia coli, Salmonella, and multidrug-resistant bacteria were recovered from samples of reclaimed water and soils at recreational parks in Chihuahua by the membrane filtration method, using selected agars for microbial growth. Samples were taken at three different seasons. No correlation in the presence of microbial indicators and multidrug-resistant bacteria (p > 0.05) was found between the distance from the wastewater treatment plant to the point of use. Presence of storage tanks in parks showed a significant effect (p < 0.05) with a higher level of E. coli. The highest count in wastewater occurred in summer. We isolated 392 multidrug-resistant bacteria from water and soil; cluster analysis showed that the microorganisms at each location were of different origins. Irrigation with reclaimed wastewater did not have a negative effect on the presence of microbial indicators of the quality of soils in the parks. However, the prevalence of multidrug-resistant bacteria still represents a potential risk factor for human health.


Assuntos
Reciclagem , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Monitoramento Ambiental , Escherichia coli/isolamento & purificação , Parques Recreativos , Salmonella/isolamento & purificação , Microbiologia do Solo , Microbiologia da Água
11.
FEMS Microbiol Ecol ; 92(6): fiw077, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27090758

RESUMO

During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms.


Assuntos
Azospirillum brasilense/metabolismo , Chlorella/metabolismo , Ácidos Indolacéticos/metabolismo , Simbiose/fisiologia , Tiamina/metabolismo , Triptofano/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Meios de Cultura/metabolismo , Desenvolvimento Vegetal , Triptofano Sintase/genética , Triptofano Sintase/metabolismo
12.
Res Microbiol ; 167(5): 367-79, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26924113

RESUMO

This study measured the relations between tryptophan production, the phytohormone indole-3-acetic acid (IAA) and the metabolism and accumulation of starch during synthetic mutualism between the microalgae Chlorella sorokiniana and the microalgae growth-promoting bacteria Azospirillum brasilense, created by co-immobilization in alginate beads. Experiments used two wild-type A. brasilense strains (Cd and Sp6) and an IAA-attenuated mutant (SpM7918) grown under nitrogen-replete and nitrogen-starved conditions tested under dark, heterotrophic and aerobic growth conditions. Under all incubating conditions, C. sorokiniana, but not A. brasilense, produced tryptophan. A significant correlation between IAA-production by A. brasilense and starch accumulation in C. sorokiniana was found, since the IAA-attenuated mutant was not producing increased starch levels. The highest ADP-glucose pyrophosphorylase (AGPase) activity, starch content and glucose uptake were found during the interaction of A. brasilense wild type strains with the microalgae. When the microalgae were grown alone, they produced only small amounts of starch. Supplementation with synthetic IAA to C. sorokiniana grown alone enhanced the above parameters, but only transiently. Activity of α-amylase decreased under nitrogen-replete conditions, but increased under nitrogen-starved conditions. In summary, this study demonstrated that, during synthetic mutualism, the exchange of tryptophan and IAA between the partners is a mechanism that governs several changes in starch metabolism of C. sorokiniana, yielding an increase in starch content.


Assuntos
Azospirillum brasilense/metabolismo , Chlorella/metabolismo , Ácidos Indolacéticos/metabolismo , Amido/metabolismo , Triptofano/metabolismo , Aerobiose , Azospirillum brasilense/crescimento & desenvolvimento , Chlorella/crescimento & desenvolvimento , Escuridão , Processos Heterotróficos , Nitrogênio/metabolismo , Simbiose
13.
Rev Argent Microbiol ; 47(3): 236-44, 2015.
Artigo em Espanhol | MEDLINE | ID: mdl-26364185

RESUMO

The objective of this study was to evaluate the effect of irrigation with yeasts (Debaryomyces hansenii var. Fabry, Yarowia lipolytica YIBCS002, Yarowia lipolytica var. BCS and Candida pseudointermedia) on the final nutritional content of hydroponic green maize fodder (Zea Zea mays L.), applied at different fodder growth stages (1. seed-seedling stage, 2. seedling-plant 20cm, 3. during all the culture). Irrespective of the fodder growth stages at which they were applied, all yeasts tested enhanced the content of raw protein, lipids, ash, moisture and energy. The percentage of electrolytes (Na, K, Cl, sulphates, Ca and Mg) showed different responses depending on the kind of yeast applied; D. hansenii exhibited the highest increment in all electrolytes, except for phosphorous. We conclude that the addition of yeasts belonging to the genera Debaryomyces, Candida and Yarowia to the irrigation solution of hydroponic systems enhances the nutrient content of green fodder. This kind of irrigation can be applied to generate high commercial value cultures in limited spaces.


Assuntos
Irrigação Agrícola , Ração Animal/análise , Fertilizantes , Hidroponia/métodos , Valor Nutritivo , Leveduras , Zea mays/química , Lipídeos/análise , Minerais/análise , Proteínas de Plantas/análise , Plântula , Sementes , Soluções , Suspensões , Zea mays/crescimento & desenvolvimento
14.
Rev. argent. microbiol ; 47(3): 236-244, set. 2015. graf
Artigo em Espanhol | LILACS | ID: biblio-843131

RESUMO

El objetivo del presente estudio fue evaluar el efecto de la irrigación con las levaduras Debaryomyces hansenii var. Fabry, Yarowia lipolytica YIBCS002, Yarowia lipolytica var. BCS y Candida pseudointermedia sobre el contenido nutricional final del forraje verde hidropónico de maíz (Zea mays L. ), al ser efectuada en diferentes etapas de crecimiento de aquel (fase semilla-plántula o fase plántula-planta 20 cm), o bien durante todo el cultivo. Todas las levaduras incrementaron el contenido de proteína cruda, lípidos, cenizas, humedad y energía bruta, independientemente de la etapa de crecimiento del forraje en las que fueron aplicadas. El porcentaje de electrólitos (Na, K, Cl, sulfatos, Ca y Mg) varió en función de la levadura aplicada; D. hansenii incrementó todos los electrólitos, excepto el P. Se concluye que la adición de levaduras del género Debaryomyces, Candida y Yarowia en la solución de riego de sistemas hidropónicos mejora el contenido de nutrientes del forraje verde. Esta práctica puede contribuir a la generación de cultivos de valor comercial en espacios limitados


The objective of this study was to evaluate the effect of irrigation with yeasts (Debaryomyces hansenii var. Fabry, Yarowia lipolytica YIBCS002, Yarowia lipolytica var. BCS and Candida pseudointermedia) on the final nutritional content of hydroponic green maize fodder (Zea Zea mays L.), applied at different fodder growth stages (1. seed-seedling stage, 2. seedling-plant 20 cm, 3. during all the culture). Irrespective of the fodder growth stages at which they were applied, all yeasts tested enhanced the content of raw protein, lipids, ash, moisture and energy. The percentage of electrolytes (Na, K, Cl, sulphates, Ca and Mg) showed different responses depending on the kind of yeast applied; D. hansenii exhibited the highest increment in all electrolytes, except for phosphorous. We conclude that the addition of yeasts belonging to the genera Debaryomyces, Candida and Yarowia to the irrigation solution of hydroponic systems enhances the nutrient content of green fodder. This kind of irrigation can be applied to generate high commercial value cultures in limited spaces.


Assuntos
Fermento Seco/análise , Fermento Seco/metabolismo , Hidroponia/métodos , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA