Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2782: 147-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622399

RESUMO

Immunotherapies represent one of the current most promising challenges in cancer treatment. They are based on the boost of natural immune responses, aimed at cancer eradication. However, the success of immunotherapeutic approaches strictly depends on the interaction between immune cells and cancer cells. Preclinical drug tests currently available are poor in fully predicting the actual safety and efficacy of immunotherapeutic treatments under development. Indeed, conventional 2D cell culture underrepresents the complexity of the tumour microenvironment, while in vivo animal models lack in mimicking the human immune cell responses. In this context, predictability, reliability, and complete immune compatibility still represent challenges to overcome. For this aim, novel 3D, fully humanized in vitro cancer tissue models have been recently optimized by adopting emerging technologies, such as organ-on-chips (OOC) and 3D cancer cell-laden hydrogels. In particular, a novel multi-in vitro organ (MIVO) OOC platform has been recently adopted to culture 3D clinically relevant size cancer tissues under proper physiological culture conditions to investigate anti-cancer treatments and immune-tumour cell crosstalk.The proposed immune-tumour OOC-based model offers a potential tool for accurately modelling human immune-related diseases and effectively assessing immunotherapy efficacy, finally offering promising experimental approaches for personalized medicine.


Assuntos
Neoplasias , Animais , Humanos , Avaliação Pré-Clínica de Medicamentos , Reprodutibilidade dos Testes , Neoplasias/terapia , Técnicas de Cultura de Células , Microambiente Tumoral , Imunoterapia
2.
Arch Dermatol Res ; 315(6): 1837-1841, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36763158

RESUMO

Bullous pemphigoid (BP) is an autoimmune blistering disease that targets the haemidesmosomal proteins, mainly BP180. Extracellular vesicles (EVs) have been demonstrated to carry tissue-specific autoantigens in the setting of autoimmune diseases and transplant organ rejection; this phenomenon was demonstrated to have pathogenic implications in autoimmune diseases and to correlate with transplant rejection severity. The purpose of this study was to identify the presence of BP targeted autoantigens in blister fluid derived EVs. We isolated, by size exclusion chromatography, EVs derived from blisters of BP-patients and from suction blisters of healthy donors. EV characterization was performed by flow cytometry and nanoparticle tracking analysis. Western blot analysis was used to investigate the presence of autoantigens. A suspension enriched in EVs was efficiently obtained from blister fluid from patients and healthy donors. EV-enriched fractions were enriched in particles with a size distribution characterizing small-EVs (main peak was present at 94.5 nm). BP180 was found, by western blot analysis, in EVs derived from blister fluid of 3 out 6 BP patients and in none of EVs isolated from suction blister fluid of healthy donors. BP230 and Dsg1 were not detectable in EVs of any of the samples. No specific clinical characteristics seemed to correlate to the presence of BP180 in EVs. The discovery of BP180 in EVs derived from blister fluid might help understanding BP pathogenesis.


Assuntos
Doenças Autoimunes , Vesículas Extracelulares , Penfigoide Bolhoso , Humanos , Vesícula , Projetos Piloto , Autoanticorpos , Colágenos não Fibrilares , Autoantígenos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia
3.
Front Bioeng Biotechnol ; 11: 1297644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162179

RESUMO

Introduction: The secretome of mesenchymal stromal cells (MSCs) serves as an innovative tool employed in the regenerative medicine approach. In this particular context, three-dimensional (3D) culture systems are widely utilized to better replicate in vivo conditions and facilitate prolonged cell maintenance during culture. The use of spheroids enables the preservation of the classical phenotypical characteristics of MSCs. However, the distinct microenvironment within the spheroid may impact the secretome, thereby enhancing the angiogenic properties of adult MSCs that typically possess a reduced angiogenic potential compared to MSCs derived from perinatal tissues due to the hypoxia created in the internal region of the spheroid. Methods: In this study, large spheroids (2,600 cells, ∼300 µm diameter) and small spheroids (1,000 cells, ∼200 µm diameter) were used to examine the role of spheroid diameter in the generation of nutrients and oxygen gradients, cellular senescence, and the angiogenic potential of secreted factors and extracellular vesicles (EVs). Results: In this study, we demonstrate that large spheroids showed increased senescence and a secretome enriched in pro-angiogenic factors, as well as pro-inflammatory and anti-angiogenic cytokines, while small spheroids exhibited decreased senescence and a secretome enriched in pro-angiogenic molecules. We also demonstrated that 3D culture led to a higher secretion of EVs with classical phenotypic characteristics. Soluble factors and EVs from small spheroids exhibited higher angiogenic potential in a human umbilical vein endothelial cell (HUVEC) angiogenic assay. Discussion: These findings highlighted the necessity of choosing the appropriate culture system for obtaining soluble factors and EVs for specific therapeutic applications.

4.
Front Bioeng Biotechnol ; 10: 902038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757808

RESUMO

Cardiomyocyte renewal represents an unmet clinical need for cardiac regeneration. Stem cell paracrine therapy has attracted increasing attention to resurge rescue mechanisms within the heart. We previously characterized the paracrine effects that human amniotic fluid-derived stem cells (hAFSC) can exert to provide cardioprotection and enhance cardiac repair in preclinical models of myocardial ischemia and cardiotoxicity. Here, we analyze whether hAFSC secretome formulations, namely, hAFSC conditioned medium (hAFSC-CM) over extracellular vesicles (hAFSC-EVs) separated from it, can induce cardiomyocyte renewal. c-KIT+ hAFSC were obtained by leftover samples of II trimester prenatal amniocentesis (fetal hAFSC) and from clinical waste III trimester amniotic fluid during scheduled C-section procedures (perinatal hAFSC). hAFSC were primed under 1% O2 to enrich hAFSC-CM and EVs with cardioactive factors. Neonatal mouse ventricular cardiomyocytes (mNVCM) were isolated from cardiac tissue of R26pFUCCI2 mice with cell cycle fluorescent tagging by mutually exclusive nuclear signal. mNVCM were stimulated by fetal versus perinatal hAFSC-CM and hAFSC-EVs to identify the most promising formulation for in vivo assessment in a R26pFUCCI2 neonatal mouse model of myocardial infarction (MI) via intraperitoneal delivery. While the perinatal hAFSC secretome did not provide any significant cardiogenic effect, fetal hAFSC-EVs significantly sustained mNVCM transition from S to M phase by 2-fold, while triggering cytokinesis by 4.5-fold over vehicle-treated cells. Treated mNVCM showed disorganized expression of cardiac alpha-actinin, suggesting cytoskeletal re-arrangements prior to cell renewal, with a 40% significant downregulation of Cofilin-2 and a positive trend of polymerized F-Actin. Fetal hAFSC-EVs increased cardiomyocyte cell cycle progression by 1.8-fold in the 4-day-old neonatal left ventricle myocardium short term after MI; however, such effect was lost at the later stage. Fetal hAFSC-EVs were enriched with a short isoform of Agrin, a mediator of neonatal heart regeneration acting by YAP-related signaling; yet in vitro application of YAP inhibitor verteporfin partially affected EV paracrine stimulation on mNVCM. EVs secreted by developmentally juvenile fetal hAFSC can support cardiomyocyte renewal to some extension, via intercellular conveyance of candidates possibly involving Agrin in combination with other factors. These perinatal derivative promising cardiogenic effects need further investigation to define their specific mechanism of action and enhance their potential translation into therapeutic opportunity.

5.
Stem Cells Transl Med ; 10(12): 1680-1695, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480533

RESUMO

The secretome of mesenchymal stromal cells (MSCs) derived from different tissue sources is considered an innovative therapeutic tool for regenerative medicine. Although adipose tissue-and bone marrow-derived MSCs (ADSCs and BMSCs, respectively) share many biological features, the different tissue origins can be mirrored by variations in their secretory profile, and in particular in the secreted extracellular vesicles (EVs). In this study, we carried out a detailed and comparative characterization of middle- and small-sized EVs (mEVs and sEVs, respectively) released by either ADSCs or BMSCs. Their involvement in an endochondral ossification setting was investigated using ex vivo metatarsal culture models that allowed to explore both blood vessel sprouting and bone growth plate dynamics. Although EVs separated from both cell sources presented similar characteristics in terms of size, concentration, and marker expression, they exhibited different characteristics in terms of protein content and functional effects. ADSC-EVs overexpressed pro-angiogenic factors in comparison to the BMSC-counterpart, and, consequently, they were able to induce a significant increase in endothelial cord outgrowth. On the other hand, BMSC-EVs contained a higher amount of pro-differentiation and chemotactic proteins, and they were able to prompt growth plate organization. The present study highlights the importance of selecting the appropriate cell source of EVs for targeted therapeutic applications.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Tecido Adiposo , Medula Óssea , Proliferação de Células , Células Cultivadas , Condrogênese , Vesículas Extracelulares/metabolismo
6.
Cells ; 9(4)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340136

RESUMO

Regenerative strategies for human articular cartilage are still challenging despite the presence of resident progenitor cell population. Today, many efforts in the field of regenerative medicine focus on the use of platelet derivatives due to their ability to reactivate endogenous mechanisms supporting tissue repair. While their use in orthopedics continues, mechanisms of action and efficacy need further characterization. We describe that the platelet lysate (PL) is able to activate chondro-progenitor cells in a terminally differentiated cartilage tissue. Primary cultures of human articular chondrocytes (ACs) and cartilage explants were set up from donor hip joint biopsies and were treated in vitro with PL. PL recruited a chondro-progenitors (CPCs)-enriched population from ex vivo cartilage culture, that showed high proliferation rate, clonogenicity and nestin expression. CPCs were positive for in vitro tri-lineage differentiation and formed hyaline cartilage-like tissue in vivo without hypertrophic fate. Moreover, the secretory profile of CPCs was analyzed, together with their migratory capabilities. Some CPC-features were also induced in PL-treated ACs compared to fetal bovine serum (FBS)-control ACs. PL treatment of human articular cartilage activates a stem cell niche responsive to injury. These facts can improve the PL therapeutic efficacy in cartilage applications.


Assuntos
Plaquetas/metabolismo , Cartilagem Articular/citologia , Cartilagem Articular/fisiologia , Regeneração/fisiologia , Engenharia Tecidual , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Senescência Celular , Condrogênese , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Hipertrofia , Inflamação/patologia , Camundongos Nus , Pessoa de Meia-Idade , Nestina/metabolismo , Fenótipo , Células-Tronco/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-32117953

RESUMO

Osteoarthritis (OA) is a disabling joint disorder causing articular cartilage degeneration. Currently, the treatments are mainly aimed to pain and symptoms relief, rather than disease amelioration. Human bone marrow stromal cells (hBMSCs) have emerged as a promising paracrine mechanism-based tool for OA treatment. Here, we investigate the therapeutic potential of conditioned media (CM) and extracellular vesicles (EVs) isolated from hBMSC and grown in a xeno-free culture system (XFS) compared to the conventional fetal bovine serum-culture system (FBS) in an in vitro model of OA. First, we observed that XFS promoted growth and viability of hBMSCs compared to FBS-containing medium while preserving their typical phenotype. The biological effects of the CM derived from hBMSC cultivated in XFS- and FBS-based medium were tested on IL-1α treated human chondrocytes, to mimic the OA enviroment. Treatment with CM derived from XFS-cultured hBMSC inhibited IL-1α-induced expression of IL-6, IL-8, and COX-2 by hACs compared to FBS-based condition. Furthermore, we observed that hBMSCs grown in XFS produced a higher amount of EVs compared to FBS-culture. The hBMSC-EVs not only inhibit the adverse effects of IL-1α-induced inflammation, but play a significant in vitro chondroprotective effect. In conclusion, the XFS medium was found to be suitable for isolation and expansion of hBMSCs with increased safety profile and intended for ready-to-use clinical therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA