RESUMO
The human coronavirus disease (COVID-19) pandemic is caused by a novel coronavirus; the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Natural products, secondary metabolites show positive leads with antiviral and immunotherapy treatments using genomic studies in silico docking. In addition, it includes the action of a mechanism targeting the SARS-CoV-2. In this literature, we aimed to evaluate the antiviral movement of the NT-VRL-1 unique terpene definition to Human coronavirus (HCoV-229E). The effects of 19 hydrolysable tannins on the SARS-CoV-2 were therefore theoretically reviewed and analyzed utilising the molecular operating surroundings for their C-Like protease 3CLpro catalytic dyad residues Angiotensin converting enzyme-2 (MOE 09). Pedunculagin, tercatan, and castalin were detected as interacting strongly with SARS-receptor Cov-2's binding site and catalytic dyad (Cys145 and His41). SARS-CoV-2 methods of subunit S1 (ACE2) inhibit the interaction of the receiver with the s-protein once a drug molecule is coupled to the s-protein and prevent it from infecting the target cells in alkaloids. Our review strongly demonstrates the evidence that natural compounds and their derivatives can be used against the human coronavirus and serves as an area of research for future perspective.
Assuntos
Produtos Biológicos , COVID-19 , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Humanos , Pandemias , SARS-CoV-2RESUMO
Background: Diabetic wound (DW) is the most devastating complication resulting in significant mortality and morbidity in diabetic patients. The objective of the current study was to formulate Epidermal Growth Factor loaded Chitosan nanoparticle impregnated with thermos-responsive injectable hydrogel with protease inhibitor. EGF, shown in all stages of wound healing from inflammation to proliferation and remodelling, combined with Doxycycline, a well-known anti-inflammatory and anti-bacterial drug, could be a better strategy in diabetic wound healing. However, EGF's low stability makes it difficult to use. Methodology: The nanoparticles were prepared using the ionic gelation method. The prepared nanoparticles were evaluated for particle size, zeta potential, entrapment efficiency, and SEM studies. Further, the optimized nanoparticle batch was loaded into hydrogel with a protease inhibitor. The hydrogel was evaluated for morphology, protease degradation, in vitro drug release, anti-bacterial activity, cell migration, in vitro cell biocompatibility, and in vivo wound healing studies. Results and Conclusion: The particle size analysis of nanoparticles revealed the size (203 ± 1.236 nm), Zeta potential (+28.5 ± 1.0 mV), and entrapment efficiency of 83.430 ± 1.8%, respectively. The hydrogel showed good porous morphology, injectability, thermo-responsive, biocompatibility, and controlled drug release. In vitro anti-bacterial studies revealed the potential anti-bacterial activity of doxycycline against various microbes. In vivo data indicated that combining EGF and DOX considerably reduced inflammation time-dependent than single-agent treatment. Furthermore, histological studies corroborated these findings. After topical application of hydrogel, histopathology studies revealed significant collagen synthesis and a fully regenerated epithelial layer and advancement in all three stages (proliferation, remodelling, and maturation), which are required to improve the diabetic wound healing process by any dressing. These findings demonstrated that hydrogel promoted cutaneous wound healing in STZ-induced rats by suppressing inflammation at the wound site. Furthermore, histological studies corroborated these findings. After topical application of hydrogel, histopathology studies revealed significant collagen synthesis, a fully regenerated epithelial layer, and advancement in all three stages (proliferation, remodelling, and maturation), which are required to improve the diabetic wound healing process by any dressing. These findings demonstrated that hydrogel promoted cutaneous wound healing in STZ-induced rats by suppressing inflammation at the wound site.
RESUMO
Rheumatoid arthritis (RA) is a progressive inflammatory disorder characterized by swollen joints, discomfort, tightness, bone degeneration and frailty. Genetic, agamogenetic and sex-specific variables, Prevotella, diet, oral health and gut microbiota imbalance are all likely causes of the onset or development of RA, perhaps the specific pathways remain unknown. Lactobacillus spp. probiotics are often utilized as relief or dietary supplements to treat bowel diseases, build a strong immune system and sustain the immune system. At present, the action mechanism of Lactobacillus spp. towards RA remains unknown. Therefore, researchers conclude the latest analysis to effectively comprehend the ultimate pathogenicity of rheumatoid arthritis, as well as the functions of probiotics, specifically Lactobacillus casei or Lactobacillus acidophilus, in the treatment of RA in therapeutic and diagnostic reports. RA is a chronic inflammation immunological illness wherein the gut microbiota is affected. Probiotics are organisms that can regulate gut microbiota, which may assist to relieve RA manifestations. Over the last two decades, there has been a surge in the use of probiotics. However, just a few research have considered the effect of probiotic administration on the treatment and prevention of arthritis. Randomized regulated experimental trials have shown that particular probiotics supplement has anti-inflammatory benefits, helps people with RA enhance daily activities and alleviates symptoms. As a result, utilizing probiotic microorganisms as therapeutics could be a potential possibility for arthritis treatment. This review highlights the known data on the therapeutic and preventative effects of probiotics in RA, as well as their interactions.
Assuntos
Artrite Reumatoide/terapia , Probióticos/uso terapêutico , Artrite Reumatoide/microbiologia , Microbioma Gastrointestinal , Humanos , Inflamação/tratamento farmacológico , Resultado do TratamentoRESUMO
Parkinson's disease (PD) is a neurodegenerative disorder defined by progressive deterioration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Dental pulp stem cells (DPSCs) have been proposed to replace the degenerated dopaminergic neurons due to its inherent neurogenic and regenerative potential. However, the effective delivery and homing of DPSCs within the lesioned brain has been one of the many obstacles faced in cell-based therapy of neurodegenerative disorders. We hypothesized that DPSCs, delivered intranasally, could circumvent these challenges. In the present study, we investigated the therapeutic efficacy of intranasally administered DPSCs in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Human deciduous DPSCs were cultured, pre-labelled with PKH 26, and intranasally delivered into PD mice following MPTP treatment. Behavioural analyses were performed to measure olfactory function and sensorimotor coordination, while tyrosine hydroxylase (TH) immunofluorescence was used to evaluate MPTP neurotoxicity in SNpc neurons. Upon intranasal delivery, degenerated TH-positive neurons were ameliorated, while deterioration in behavioural performances was significantly enhanced. Thus, the intranasal approach enriched cell delivery to the brain, optimizing its therapeutic potential through its efficacious delivery and protection against dopaminergic neuron degeneration.
Assuntos
Polpa Dentária/citologia , Intoxicação por MPTP/terapia , Doença de Parkinson/terapia , Parte Compacta da Substância Negra/citologia , Células-Tronco/fisiologia , Animais , Comportamento Animal , Diferenciação Celular/fisiologia , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Humanos , Intoxicação por MPTP/metabolismo , Masculino , Camundongos , Degeneração Neural/metabolismo , Degeneração Neural/terapia , Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
The aim of the present study is to analyze the viability of anti-EGFR anchored immunonanoparticle (INP) bearing Paclitaxel (PTX) to specifically bind the EGFR protein on the TNBC cells. The NP was prepared by nanoprecipitation and characterized the particle size, charge, entrapment of drug and release of it. The anti-EGFR anchored and the integrity was confirmed by SDS-PAGE. Cytotoxicity and NPs cellular uptake was analyzed with MDA-MB-468 type cancer cells and the EGFR expression was confirmed by PCR, qualitatively and quantitatively. The in-vivo antitumor activity of INP was determined by using athymic mice model and targeting efficiency was measured by calculating the PTX accumulation in the tumor plasma. The prepared INP with the size of 336.3 nm and the charge of -3.48 mV showed sustained drug release upto 48 h. The INP showed significant reduction of cancer cell viability of 10.6% for 48 h with 93 fold higher PTX accumulation in the tumor plasma compared with NPs. Based on these reports, we recommend that anti-EGFR anchored PTX loaded NP may have the ability to target the TNBC cells and improve the therapeutic action and subsidize the side effects of PTX for the treatment of TNBC.
Assuntos
Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Humanos , Camundongos , Nanopartículas/química , Paclitaxel/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Triple-Negative Breast Cancer is an aggressive type of breast cancer, which is not treatable by chemotherapy drugs, due to the lack of Estrogen Receptor (ER), Progesterone Receptor (PR) expression and Human Epidermal Growth Factor Receptor 2 (HER2) on the cell surface. OBJECTIVE: The aim of this study was to compare the effect of paclitaxel loaded PLGA nanoparticle (PTX-NPs) on the cytotoxicity and apoptosis of the different MDA-MB type of cell lines. METHOD: PTX-NPs were prepared by nanoprecipitation method and characterized earlier. The cytotoxicity of PTX-NPs was evaluated by MTT and LDH assay, later apoptosis was calculated by flow cytometry analysis. RESULTS: The prepared NP size of 317.5 nm and zetapontial of -12.7 mV showed drug release of 89.1 % at 48 h. MDA-MB-231 type cell showed significant cytotoxicity by MTT method of 47.4 ± 1.2 % at 24 h, 34.6 ± 0.8 % at 48 h and 23.5 ± 0.5 % at 72 h and LDH method of 35.9 ± 1.5 % at 24 h, 25.4 ± 0.6 % at 48 h and 19.8 ± 2.2 % at 72 h with apoptosis of 47.3 ± 0.4 %. CONCLUSION: We have found that PTX-NPs showed the cytotoxic effect on all the MDA-MB cancer cell lines and showed potent anticancer activities against MDA-MB-231 cell line via induction of apoptosis.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Nanopartículas/química , Paclitaxel/farmacologia , Poliésteres/química , Polietilenoglicóis/química , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Paclitaxel/química , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
BACKGROUND: Butter is one of the widely used fats present in the diet. However, there is no satisfactory study available that evaluates the effect of a high-fat diet containing butter as the principal fat on the development of non-alcoholic fatty liver disease (NAFLD). METHODS: In the present study, butter was used for the development of steatosis in Chang liver cells in an in vitro study and Swiss albino mice in an in vivo study. In vitro steatosis was established, and butter was compared with oleic acid in Chang liver cells using an oil red O (ORO)-based colorimetric assay. In the in vivo study, a butter-rich special diet was fed for 15 weeks to mice, who showed no significant change in body weight. The expression pattern of phosphatase and tensin homolog (PTEN) and miR-21 was compared by reverse transcriptase-PCR. RESULTS AND CONCLUSIONS: Special diet-fed animals showed downregulated PTEN compared to normal diet-fed animals, while levels of miR-21 remained the same. Elevations in biochemical parameters, viz., triglycerides and liver function tests showed symptoms of onset of NAFLD. Histophathological study of livers of test animals confirmed mild-to-moderate degree of NAFLD.
Assuntos
Manteiga/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/fisiopatologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/fisiopatologia , Masculino , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Triglicerídeos/metabolismoRESUMO
The synthesis of novel indolopyrazoline derivatives (P1-P4 and Q1-Q4) has been characterized and evaluated as potential anti-Alzheimer agents through in vitro Acetylcholinesterase (AChE) inhibition and radical scavenging activity (antioxidant) studies. Specifically, Q3 shows AChE inhibition (IC50: 0.68±0.13µM) with strong DPPH and ABTS radical scavenging activity (IC50: 13.77±0.25µM and IC50: 12.59±0.21µM), respectively. While P3 exhibited as the second most potent compound with AChE inhibition (IC50: 0.74±0.09µM) and with DPPH and ABTS radical scavenging activity (IC50: 13.52±0.62µM and IC50: 13.13±0.85µM), respectively. Finally, molecular docking studies provided prospective evidence to identify key interactions between the active inhibitors and the AChE that furthermore led us to the identification of plausible binding mode of novel indolopyrazoline derivatives. Additionally, in-silico ADME prediction using QikProp shows that these derivatives fulfilled all the properties of CNS acting drugs. This study confirms the first time reporting of indolopyrazoline derivatives as potential anti-Alzheimer agents.
Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Indóis/farmacologia , Pirazóis/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-AtividadeRESUMO
Potential use of siRNA as therapeutic agent has elicited a great deal of interest. However, insufficient cellular uptake and poor stability limited its application in therapeutics. In our earlier study, we prepared PLGA nanoparticles for effective delivery of siRNA targeting Bcl-2 gene to block its expression. Purpose of the present study was to improve effectiveness of PLGA nanoformulation of siRNA targeting anti-apoptotic Bcl-2 gene through chitosan coating. We prepared chitosan coated PLGA nanoparticles by using the double emulsion solvent diffusion (DESE) method. Characterization of prepared chitosan coated nanoformulation was done followed by cytotoxicity studies, expression studies and in vivo studies. Particle size of chitosan coated nanoparticles was found to be increased compared to PLGA nanoparticles from 244 to 319 nm. Surface charge of chitosan coated nanoparticles was found to be positive facilitating transfection of nanoformulation into cells. In vitro studies indicated increased transfection of nanoparticles resulting in effective silencing of Bcl-2. Marked apoptotic lesions were observed in nuclear staining studies. On comparison of the results from the present study with those of previous study, it was found that the extent of silencing of Bcl-2 gene by PLGA nanoformulation has improved significantly through chitosan coating. In vivo studies showed significant tumor regression in animals treated with chitosan coated PLGA nanoformulation of siRNA.
Assuntos
Quitosana/administração & dosagem , Ácido Láctico/administração & dosagem , Nanopartículas/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Feminino , Inativação Gênica , Genes bcl-2 , Humanos , Ácido Láctico/química , Masculino , Camundongos , Nanopartículas/química , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
With the advent of advanced tools in molecular biology, understanding on cancer etiology has improved. siRNA can be considered as an effective tool in cancer therapy through silencing overexpressed genes responsible for cell proliferation or preventing apoptosis. However, some contentious issues such as stability and delivery of siRNA are to be resolved. Bcl-2, an anti-apoptotic gene, is overexpressed in a wide variety of cancers and responsible for drug resistance tumors. In our earlier studies, we developed a nanoformulation of siRNA targeting the Bcl-2 and achieved successful delivery in vitro and in vivo. To extend the scope of the study further, in the present work, we studied the role of nanoformulation of siRNA as adjuvant in chemotherapy with cisplatin. Dose dependant nephrotoxicity is a serious concern apart from other adverse effects of cisplatin. The IC(50) value for cisplatin was decreased from 9.83 µmol/l to 7.43 µmol/l in HeLa cells and from 8.54 µmol/l to 6.68 µmol/l in HEp-2 cells, when it was given with siRNA nanoformulation. Cisplatin at the dose of 1.7 mg/kg in combination with siRNA nanoformulation was effective in improving the lifespan of tumor bearing mice with significant decrease in nephrotoxicity.
Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/uso terapêutico , Tionucleotídeos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioterapia Adjuvante , Cisplatino/farmacologia , Terapia Combinada , Células HeLa , Células Hep G2 , Humanos , Camundongos , RNA Interferente Pequeno/farmacologia , Tionucleotídeos/farmacologiaRESUMO
Overexpression of anti-apoptotic Bcl-2 is often observed in a wide variety of human cancers. It prevents the induction of apoptosis in neoplastic cells and contributes to resistance to chemotherapy. RNA interference has emerged as an efficient and selective technique for gene silencing. The potential to use small interfering RNA (siRNA) as a therapeutic agent for the treatment of cancer has elicited a great deal of interest. However, insufficient cellular uptake and poor stability have limited its therapeutic applications. The purpose of this study was to prepare chitosan nanoparticles via ionic gelation of chitosan by tripolyphosphate for effective delivery of siRNA to silence the anti-apoptotic Bcl-2 gene in neoplastic cells. Chitosan nanoparticles loaded with siRNA were in the size range 190 to 340 nm with a polydispersive index ranging from 0.04 to 0.2. They were able to completely bind with siRNA, provide protection against nuclease degradation, and enhance the transfection. Cell culture studies revealed that nanoparticles with entrapped siRNA could efficiently silence the antiapoptotic Bcl-2 gene. Studies on Swiss albino mice showed that siRNA could be effectively delivered through nanoparticles. There was significant decrease in the tumor volume. Blocking the expression of anti-apoptotic Bcl-2 can enhance the sensitivity of cancerous cells to anti-cancer drugs and the apoptosis rate. Therefore, nanoformulations with siRNA can be promoted as an adjuvant therapy in combination with anti-cancer drugs.
Assuntos
Quitosana/química , Nanopartículas/química , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , RNA Interferente Pequeno/genética , Transfecção/métodos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Humanos , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polifosfatos/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Estabilidade de RNA , Carga Tumoral/efeitos dos fármacosRESUMO
The purpose of this research work was to prepare poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles for delivery of siRNA (small interfering RNA) for silencing anti-apoptotic Bcl-2 gene in cancerous cells by using the double emulsion solvent diffusion (DESE) method. Overexpression of Bcl-2 is often seen in a wide variety of human cancers. This prevents the induction of programmed cell death (i.e., apoptosis) in cancerous cells. It is also reported that over-expression of Bcl-2 contributes to resistance in chemotherapy and inhibits the apoptosis induced by chemotherapeutic agents. Agents antagonizing the anti-apoptotic Bcl-2 protein have been shown to restore normal apoptotic processes in cancer cells. RNA interference (RNAi) has emerged as an efficient and selective technique for gene silencing, siRNA mediated gene silencing has been used in a wide variety of disease condition. PLGA nanoparticles were able to completely bind siRNA and to provide protection for siRNA against nuclease degradation. In vitro cell culture studies subsequently revealed that PLGA nanoparticles with adsorbed siRNA could efficiently silence the targeted anti-apoptotic Bcl-2 gene in mammalian cells. In vivo studies results showed that siRNA was effectively delivered through nanoparticles and there was significant decrease in the tumor volume.