Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574922

RESUMO

Sialic acids are negatively charged carbohydrates that are components of saccharide chains covalently linked to macromolecules. Sialylated glycoproteins are important for most biological processes, including reproduction, where they are associated with spermatogenesis, sperm motility, immune responses, and fertilization. Changes in the glycoprotein profile or sialylation in glycoproteins are likely to affect the quality of ejaculate. The aim of this study was to determine differences in the degree of sialylation between normozoospermic ejaculates and ejaculates with a pathological spermiogram using two lectins, Sambucus nigra (SNA) and Maackia amurensis (MAL II/MAA) recognizing α-2,6 or α-2,3 linkage of Sia to galactosyl residues. Our results show a close relationship between seminal plasma (SP) sialoproteins and the presence of anti-sperm antibodies in the ejaculate, apoptotic spermatozoa, and ejaculate quality. Using mass spectrometry, we identified SP sialoproteins such as, semenogelins, glycodelin, prolactin-inducible protein, lactotransferrin, and clusterin that are associated with spermatozoa and contribute to the modulation of the immune response and sperm apoptosis. Our findings suggest a correlation between the degree of SP glycoprotein sialylation and the existence of possible pathological states of spermatozoa and reproductive organs. Glycoproteins sialylation represents a potential parameter reflecting the overall quality of ejaculate and could potentially be utilised in diagnostics.


Assuntos
Sêmen , Espermatozoides , Masculino , Humanos , Sêmen/metabolismo , Sêmen/química , Espermatozoides/metabolismo , Motilidade dos Espermatozoides , Glicoproteínas/metabolismo , Glicodelina/metabolismo , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Análise do Sêmen/métodos , Clusterina/metabolismo , Lectinas/metabolismo , Lectinas/química , Ejaculação , Ácidos Siálicos/metabolismo , Proteínas de Plasma Seminal/metabolismo , Lactoferrina/metabolismo , Apoptose
2.
Sci Adv ; 8(36): eabn0047, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070373

RESUMO

Gamete fusion is a critical event of mammalian fertilization. A random one-bead one-compound combinatorial peptide library represented synthetic human egg mimics and identified a previously unidentified ligand as Fc receptor-like 3, named MAIA after the mythological goddess intertwined with JUNO. This immunoglobulin super family receptor was expressed on human oolemma and played a major role during sperm-egg adhesion and fusion. MAIA forms a highly stable interaction with the known IZUMO1/JUNO sperm-egg complex, permitting specific gamete fusion. The complexity of the MAIA isotype may offer a cryptic sexual selection mechanism to avoid genetic incompatibility and achieve favorable fitness outcomes.

3.
Int J Biol Macromol ; 209(Pt A): 542-551, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413326

RESUMO

Integrins are transmembrane receptors expressed in all nucleated mammalian cells, critically involved in cell-matrix adhesion and cell-cell interactions that modulate many signalling cascades. It is assumed that integrins also provide essential functions of the reproductive system. In this study, we describe the detailed localization and distribution of αV integrin in the plasma membrane of bull sperm head and tail. Integrin αV was observed in the area of forming acrosome in developing sperm since the stage of round spermatids and persists in the acrosome during epididymal maturation and ejaculation till the acrosomal exocytosis. We detected CD9 and CD81 tetraspanins as the potential partners of αV integrin. Their similar staining pattern in testicular tissue suggested the involvement of these molecules in the tetraspanin web of "testisomes". Moreover, the complex of αV with ß1 and ß3 integrin subunits cannot be excluded at least in sperm. The presented findings contribute to understanding the mutual action of integrins and tetraspanins during sperm development and maturation.


Assuntos
Integrina alfaV , Espermatozoides , Reação Acrossômica , Animais , Bovinos , Células Germinativas/metabolismo , Integrina alfaV/metabolismo , Integrinas/metabolismo , Masculino , Mamíferos/metabolismo , Espermatozoides/metabolismo
4.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502434

RESUMO

Integrins are transmembrane receptors that facilitate cell adhesion and cell-extracellular matrix communication. They are involved in the sperm maturation including capacitation and gamete interaction, resulting in successful fertilization. αV integrin belongs to the integrin glycoprotein superfamily, and it is indispensable for physiological spermiogenesis and testosterone production. We targeted the gene and protein expression of the αV integrin subunit and described its membrane localization in sperm. Firstly, in mouse, we traced αV integrin gene expression during spermatogenesis in testicular fraction separated by elutriation, and we detected gene activity in spermatogonia, spermatocytes, and round spermatids. Secondly, we specified αV integrin membrane localization in acrosome-intact and acrosome-reacted sperm and compared its pattern between mouse, pig, and human. Using immunodetection and structured illumination microscopy (SIM), the αV integrin localization was confined to the plasma membrane covering the acrosomal cap area and also to the inner acrosomal membrane of acrosome-intact sperm of all selected species. During the acrosome reaction, which was induced on capacitated sperm, the αV integrin relocated and was detected over the whole sperm head. Knowledge of the integrin pattern in mature sperm prepares the ground for further investigation into the pathologies and related fertility issues in human medicine and veterinary science.


Assuntos
Integrina alfaV/metabolismo , Espermatozoides/metabolismo , Reação Acrossômica , Animais , Humanos , Masculino , Camundongos , Suínos
5.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813527

RESUMO

Integrins are transmembrane cell receptors involved in two crucial mechanisms for successful fertilization, namely, mammalian intracellular signaling and cell adhesion. Integrins α6ß4, α3ß1 and α6ß1 are three major laminin receptors expressed on the surface of mammalian cells including gametes, and the presence of individual integrin subunits α3, α6, ß1 and ß4 has been previously detected in mammalian sperm. However, to date, proof of the existence of individual heterodimer pairs in sperm and their detailed localization is missing. The major conclusion of this study is evidence that the ß4 integrin subunit is expressed in mouse sperm and that it pairs with subunit α6; additionally, there is a detailed identification of integrin heterodimer pairs across individual membranes in an intact mouse sperm head. We also demonstrate the existence of ß4 integrin mRNAs in round spermatids and spermatogonia by q-RT-PCR, which was further supported by sequencing the PCR products. Using super-resolution microscopy accompanied by colocalization analysis, we located integrin subunits as follows: α6/ß4-inner apical acrosomal membrane and equatorial segment; α3, α6/ß1, ß4-plasma membrane overlaying the apical acrosome; and α3/ß1-outer acrosomal membrane. The existence of α6ß4, α3ß1 and α6ß1 heterodimers was further confirmed by proximity ligation assay (PLA). In conclusion, we delivered detailed characterization of α3, α6, ß1 and ß4 integrin subunits, showing their presence in distinct compartments of the intact mouse sperm head. Moreover, we identified sperm-specific localization for heterodimers α6ß4, α3ß1 and α6ß1, and their membrane compartmentalization and the presented data show a complexity of membranes overlaying specialized microdomain structures in the sperm head. Their different protein compositions of these individual membrane rafts may play a specialized role, based on their involvement in sperm-epithelium and sperm-egg interaction.


Assuntos
Compartimento Celular , Integrinas/metabolismo , Multimerização Proteica , Espermatozoides/metabolismo , Animais , Integrinas/química , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Domínios Proteicos , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA