Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138135

RESUMO

Although today all of the aspects of Legionella are better understood than in the past, in many countries the interest is still mainly focused on healthcare and tourism facilities. Other at-risk areas are less explored, such as those where workers are often in contact with water during their activities. In reality, any water system capable of producing aerosols can be considered a potential source of Legionella transmission, including car washes, where a large number of users work and flow through annually. From January to May 2022, 120 samples were carried out in 30 car washes located in Messina (Italy): 60 samples of water and 60 of aerosols. The aim of this investigation was to evaluate the risk of legionellosis in car washing workers exposed to potentially contaminated aerosols. To increase the probability of finding Legionella, the sample collections were organized on different days of the week. Of the total samples taken, 10 (8.3%) were positive for Legionella: seven (11.7%) water (range 100-1000 CFU) and three (5%) aerosol (range 10-150 CFU) samples. Detected serogroups were L. pneumophila sgr 1, 7, 10 and Legionella gormanii. Given the results obtained, preventative measures should be implemented in such facilities in order to protect the health of users and car wash operators.

2.
Antibiotics (Basel) ; 12(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760753

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a topic of concern, especially in high-level care departments like neonatal intensive care units (NICUs). The systematic use of an "active" epidemiological surveillance system allows us to observe and analyze any changes in microbial distribution, limiting the risk of healthcare-associated infection (HAI) development. METHODS: We have conducted a longitudinal observational study in the five NICUs of Palermo, comparing the "pre-pandemic period" (March 2014-February 2020) with the "pandemic" one (March 2020-February 2022). The primary aim of the study was to evaluate the cumulative prevalence of carriage from multi-drug resistant (MDR) bacteria in the cumulative NICUs (NICU C). RESULTS: During the "pre-pandemic period", 9407 swabs were collected (4707 rectal, 4700 nasal); on the contrary, during the "pandemic period", a total of 2687 swabs were collected (1345 rectal, 1342 nasal). A statistically significant decrease in MDR-Gram-negative bacteria (GNB) carriage prevalence was detected during the pandemic. At the same time, there was a general worsening of the carriage of carbapenemase-forming MDR-GNB (CARBA-R+) and methicillin-resistant Staphylococcus aureus (MRSA) during the pandemic period. A significant reduction in methicillin-susceptible Staphylococcus aureus (MSSA) carriage was detected too. CONCLUSIONS: The surveillance of MDRO carriage in NICUs is fundamental for limiting the social and economic burden of HAIs.

3.
Pathogens ; 12(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37375438

RESUMO

Wastewater-based epidemiology is a well-established tool for detecting and monitoring the spread of enteric pathogens and the use of illegal drugs in communities in real time. Since only a few studies in Italy have investigated the correlation between SARS-CoV-2 in wastewater and the prevalence of COVID-19 cases from clinical testing, we conducted a one-year wastewater surveillance study in Sicily to correlate the load of SARS-CoV-2 RNA in wastewater and the reported cumulative prevalence of COVID-19 in 14 cities from October 2021 to September 2022. Furthermore, we investigated the role of SARS-CoV-2 variants and subvariants in the increase in the number of SARS-CoV-2 infections. Our findings showed a significant correlation between SARS-CoV-2 RNA load in wastewater and the number of active cases reported by syndromic surveillance in the population. Moreover, the correlation between SARS-CoV-2 in wastewater and the active cases remained high when a lag of 7 or 14 days was considered. Finally, we attributed the epidemic waves observed to the rapid emergence of the Omicron variant and the BA.4 and BA.5 subvariants. We confirmed the effectiveness of wastewater monitoring as a powerful epidemiological proxy for viral variant spread and an efficient complementary method for surveillance.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32245064

RESUMO

Determination of Legionella concentrations in water networks is useful for predicting legionellosis risks. The standard culture technique using concentration with membranes filters is the most commonly used method for environmental surveillance of Legionella. The aim of this study was to verify whether filtration with different filter pore sizes (0.2 and 0.45 µm) according to (ISO) 11731:2017, followed by directly placing them on culture media, can influence Legionella detection. Three laboratories participated in an experimental study that tested a known suspension of Legionella pneumophila (Lpn) serogroup 1 (ATCC 33152) (approximate final cell density of 15 CFU/mL). E. coli (ATCC 11775) and Pseudomonas aeruginosa (ATCC 25668) were included as control tests. The average (95% CI) percentage of recovery of Lpn was 65% using 0.45-µm filters and 15% using 0.2-µm filters (p < 0.0001). For control tests, the average (95% CI) percentage of recovery was higher with 0.45 vs. 0.2 µm filters: 97% vs. 64% for Escherichia coli (p < 0.00001) and 105% vs. 97% (p = 0.0244) for P. aeruginosa. Our results showed that the 0.45-µm filters provided the greatest detection of Legionella. Because the current national guidelines leave the choice of membrane porosity to the operator, experimental studies are important for directing operators towards a conscious choice to standardize Legionella environmental surveillance methods.


Assuntos
Legionella pneumophila , Microbiologia da Água , Meios de Cultura , Escherichia coli/isolamento & purificação , Humanos , Legionella pneumophila/isolamento & purificação , Doença dos Legionários/epidemiologia , Água , Abastecimento de Água
5.
Artigo em Inglês | MEDLINE | ID: mdl-30925660

RESUMO

Legionnaires' disease is normally acquired by inhalation of legionellae from a contaminated environmental source. Water systems of large and old buildings, such as hospitals, can be contaminated with legionellae and therefore represent a potential risk for the hospital population. In this study, we demonstrated the constant presence of Legionella in water samples from the water system of a large university hospital in Messina (Sicily, Italy) consisting of 11 separate pavilions during a period of 15 years (2004⁻2018). In total, 1346 hot water samples were collected between January 2004 and December 2018. During this period, to recover Legionella spp. from water samples, the standard procedures reported by the 2000 Italian Guidelines were adopted; from May 2015 to 2018 Italian Guidelines revised in 2015 (ISS, 2015) were used. Most water samples (72%) were positive to L. pneumophila serogroups 2⁻14, whereas L. pneumophila serogroup 1 accounted for 18% and non-Legionellapneumophila spp. Accounted for 15%. Most of the positive samples were found in the buildings where the following critical wards are situated: (Intensive Care Unit) ICU, Neurosurgery, Surgeries, Pneumology, and Neonatal Intensive Unit Care. This study highlights the importance of the continuous monitoring of hospital water samples to prevent the potential risk of nosocomial legionellosis.


Assuntos
Monitoramento Ambiental/métodos , Hospitais Universitários/organização & administração , Legionella/isolamento & purificação , Microbiologia da Água/normas , Abastecimento de Água/normas , Infecção Hospitalar/prevenção & controle , Humanos , Itália/epidemiologia , Legionella pneumophila/isolamento & purificação , Doença dos Legionários/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA