Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38676855

RESUMO

BACKGROUND: Tick-borne diseases, caused by bacterial pathogens, pose a growing threat to public health in Europe. This paper provides an overview of the historical context of the discovery of the most impactful pathogens transmitted by ticks, including Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma spp., Francisella spp., Ehrlichia spp., and Neoehrlichia mikurensis. Understanding the historical context of their discovery provides insight into the evolution of our understanding of these pathogens. METHODS AND RESULTS: Systematic investigation of the prevalence and transmission dynamics of these bacterial pathogens is provided, highlighting the intricate relationships among ticks, host organisms, and the environment. Epidemiology is explored, providing an in-depth analysis of clinical features associated with infections. Diagnostic methodologies undergo critical examination, with a spotlight on technological advancements that enhance detection capabilities. Additionally, the paper discusses available treatment options, addressing existing therapeutic strategies and considering future aspects. CONCLUSIONS: By integrating various pieces of information on these bacterial species, the paper aims to provide a comprehensive resource for researchers and healthcare professionals addressing the impact of bacterial tick-borne diseases in Europe. This review underscores the importance of understanding the complex details influencing bacterial prevalence and transmission dynamics to better combat these emerging public health threats.

2.
Limnol Oceanogr ; 65(11): 2730-2747, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33664530

RESUMO

Dissolved free taurine, an important osmolyte in phytoplankton and metazoans, has been shown to be a significant carbon and energy source for prokaryotes in the North Atlantic throughout the water column. However, the extent of the coupling between taurine production and consumption over a seasonal cycle has not been examined yet. We determined taurine production by abundant crustacean zooplankton and its role as a carbon and energy source for several prokaryotic taxa in the northern Adriatic Sea over a seasonal cycle. Taurine concentrations were generally in the low nanomolar range, reaching a maximum of 22 nmol L-1 in fall during a Pseudonitzschia bloom and coinciding with the highest zooplankton taurine release rates. Taurine accounted for up to 5% of the carbon, 11% of the nitrogen, and up to 71% of the sulfur requirements of heterotrophic prokaryotes. Members of the Roseobacter clade, Alteromonas, Thaumarchaeota, and Euryarchaeota exhibited higher cell-specific taurine assimilation rates than SAR11 cells. However, cell-specific taurine and leucine assimilation were highly variable in all taxa, suggesting species and/or ecotype specific utilization patterns of taurine and dissolved free amino acids. Copepods were able to cover the bulk taurine requirements of the prokaryotic communities in fall and winter and partly in the spring-summer period. Overall, our study emphasizes the significance of taurine as a carbon and energy source for the prokaryotic community in the northern Adriatic Sea and the importance of crustacean zooplankton as a significant source of taurine and other organic compounds for the heterotrophic prokaryotic community.

3.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299466

RESUMO

Seasonal changes of microbial abundance and associated extracellular enzymatic activity in marine snow and in seawater were studied in the northern Adriatic during a three-year period. Marine snow was present during the entire period of investigation, although in higher concentrations during summer than during winter. Microorganisms densely colonized marine snow and aggregate-associated enzymatic activity was substantially higher (up to 105 times) than in seawater. Alkaline phosphatase activity (APA) and aminopeptidase activity in marine snow showed seasonal variations with higher values in late spring-summer than in autumn-winter, probably in response to changes in the quantity and quality of organic matter. The highest cell-specific bacterial activity was found for phosphatase, followed by peptidase, and the lowest was for glucosidases. Differential hydrolysis of marine snow-derived organic matter points to the well-known phosphorus limitation of the northern Adriatic and indicates preferential utilization of phosphorus- and nitrogen-rich organic compounds by microbes, while hydrolysis of polysaccharides seemed to be less important. In oligotrophic conditions during summer, organic matter released from marine snow might represent a significant source of substrate for free-living bacteria in seawater. For the first time microorganisms producing APA in marine snow were identified, revealing that dense populations of bacteria expressed APA, while cyanobacteria did not. Cyanobacteria proliferating in marine snow could benefit from phosphorus release by bacteria and nanoflagellates.


Assuntos
Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Neve/microbiologia , Fosfatase Alcalina/metabolismo , Aminopeptidases/metabolismo , Bactérias/classificação , Glucosidases/metabolismo , Microbiota , Fósforo , Estações do Ano
4.
Mar Environ Res ; 131: 215-226, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29032852

RESUMO

The response of bacteria in terms of abundance, production and community structure to changes induced by the discharge of primary treated sewage waters was investigated combining microbiological, chemical and molecular tools. The primary treatment did not affect substantially the bacterial community structure in wastewaters and did not reduce the concentrations of fecal indicators. The spatial distribution of the sewage plume was governed by vertical stratification and currents. Bacterial abundance and production in the sea receiving waste waters depended predominantly on environmental conditions. In the waters with the highest concentration of fecal pollution indicators the bacterial community was characterized by allochthonous bacteria belonging to Epsilonproteobacteria, Firmicutes, Gammaproteobacteria and Bacteroidetes. The latter two taxa were also present in unpolluted waters but had a different structure, typical for oligotrophic environments. Although the impact of primary treated sewage waters was limited, a sanitary risk persisted due to the relevant presence of potentially pathogenic bacteria.


Assuntos
Bactérias/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Água do Mar/microbiologia , Águas Residuárias/análise , Microbiologia da Água , Bactérias/classificação , Águas Residuárias/microbiologia
5.
Mar Environ Res ; 92: 120-32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24094892

RESUMO

A systematic investigation of non-phosphorus containing glycolipids (GL) was conducted in the northern Adriatic Sea during two years at two stations with different nutrient loads. GL concentration varied both spatially and temporally, with values of 1.1-21.5 µg/L and 0.4-44.7 µg/L in the particulate and the dissolved fraction, respectively. The highest concentrations were measured during summer in surface waters and at the more oligotrophic station, where GL yields (% of total lipids) were often higher than 20% and 50% in the particulate and dissolved fractions, respectively. To obtain more insight into factors governing GL accumulation autotrophic plankton community structure (pico-, nano- and microplankton fractions), chlorophyll a, heterotrophic bacteria and nutrient concentrations were measured together with hydrographic parameters and sunlight intensity. During the investigated period smaller autotrophic plankton cells (pico- and followed by nanoplankton) prevailed in abundance over larger cells (microplankton), which were found in large numbers in freshened surface samples. Several major findings resulted from the study. Firstly, during PO4 limitation, particularly at the oligotrophic station, enhanced glycolipid instead of phospholipid accumulation takes place, representing an effective phosphate-conserving mechanism. Secondly, results suggest that at seawater temperatures >19 °C autotrophic plankton considerably accumulate GL, probably to achieve thermal stability. Thirdly, high sunlight intensities seem to influence increased GL accumulation; GL possibly plays a role in cell mechanisms that prevent/mitigate photooxidation. And finally, substantial accumulation of GL detected in the dissolved fraction could be related to the fact that GL do not contain biologically relevant elements, like phosphorus, which makes them an unattractive substrate for enzyme activity. Therefore, substantial portion of CO2 could be removed from the atmosphere in P-limited regions during summer via its capture by plankton and conversion to GL.


Assuntos
Adaptação Fisiológica , Glicolipídeos/metabolismo , Plâncton/fisiologia , Bactérias , Clorofila/metabolismo , Clorofila A , Fosfatos/metabolismo , Estações do Ano , Água do Mar , Estresse Fisiológico , Luz Solar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA