Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 150: 107580, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959646

RESUMO

α-Glucosidase inhibitory activity of galbanic acid and its new amide derivatives 3a-n were investigated. Galbanic acid and compounds 3a-n showed excellent anti-α-glucosidase activity with IC50 values ranging from 0.3 ± 0.3 µM to 416.0 ± 0.2 µM in comparison to positive control acarbose with IC50 value of = 750.0 ± 5.6. In the kinetic study, the most potent compound 3h demonstrated a competitive mode of inhibition with Ki = 0.57 µM. The interaction of the most potent compound 3h with the α-glucosidase was further elaborated by in vitro Circular dichroism assessment and in silico molecular docking and Molecular dynamics studies. Compound 3h was also non-cytotoxic on human normal cells. In silico study on pharmacokinetics and toxicity profile of the most potent galbanic acid derivatives demonstrated that these compounds are valuable lead compounds for further study in order to achieve new anti-diabetic agents.


Assuntos
Amidas , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/síntese química , alfa-Glucosidases/metabolismo , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Saccharomyces cerevisiae/enzimologia
2.
Sci Rep ; 14(1): 9410, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658742

RESUMO

Diabetes mellitus (DM) is a persistent, progressive, and multifaceted disease characterized by elevated blood glucose levels. Type 2 diabetes mellitus is associated with a relative deficit in insulin mainly due to beta cell dysfunction and peripheral insulin resistance. Metformin has been widely prescribed as a primary treatment option to address this condition. On the other hand, an emerging glucose-reducing agent known as imeglimin has garnered attention due to its similarity to metformin in terms of chemical structure. In this study, an innovative series of imeglimin derivatives, labeled 3(a-j), were synthesized through a one-step reaction involving an aldehyde and metformin. The chemical structures of these derivatives were thoroughly characterized using ESI-MS, 1H, and 13C NMR spectroscopy. In vivo tests on a zebrafish diabetic model were used to evaluate the efficacy of the synthesized compounds. All compounds 3(a-j) showed significant antidiabetic effects. It is worth mentioning that compounds 3b (FBS = 72.3 ± 7.2 mg/dL) and 3g (FBS = 72.7 ± 4.3 mg/dL) have antidiabetic effects comparable to those of the standard drugs metformin (FBS = 74.0 ± 5.1 mg/dL) and imeglimin (82.3 ± 5.2 mg/dL). In addition, a docking study was performed to predict the possible interactions between the synthesized compounds and both SIRT1 and GSK-3ß targets. The docking results were in good agreement with the experimental assay results.


Assuntos
Diabetes Mellitus Experimental , Hipoglicemiantes , Simulação de Acoplamento Molecular , Triazinas , Peixe-Zebra , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Metformina/farmacologia , Metformina/química , Metformina/síntese química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Modelos Animais de Doenças
3.
Eur J Med Chem ; 269: 116332, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508120

RESUMO

The inhibition of the α-glucosidase enzyme is crucial for targeting type 2 diabetes mellitus (DM). This study introduces a series of synthetic analogs based on thiomethylacetamide-quinoline derivatives linked to diphenyl-imidazole as highly potential α-glucosidase inhibitors. Twenty derivatives were synthesized and screened in vitro against α-glucosidase, revealing IC50 values ranging from 0.18 ± 0.00 to 2.10 ± 0.07 µM, in comparison to the positive control, acarbose. Among these derivatives, compound 10c (IC50 = 0.180 µM) demonstrated the highest potency and revealed a competitive inhibitory mechanism in kinetic studies (Ki = 0.15 µM). Docking and molecular dynamic evaluations elucidated the binding mode of 10c with the active site residues of the α-glucosidase enzyme. Moreover, in vivo assessments on a rat model of DM affirmed the anti-diabetic efficacy of 10c, evidenced by reduced fasting and overall blood glucose levels. The histopathological evaluation enhanced pancreatic islet architecture and hepatocytes in liver sections. In conclusion, novel 2-(quinoline-2-ylthio)acetamide derivatives as potent α-glucosidase inhibitors were developed. Compound 10c emerged as a promising candidate for diabetes management, warranting further investigation for potential clinical applications and mechanistic insights.


Assuntos
Compostos de Bifenilo , Diabetes Mellitus Tipo 2 , Quinolinas , Animais , Ratos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , alfa-Glucosidases/metabolismo , Cinética , Simulação de Acoplamento Molecular , Imidazóis/farmacologia , Quinolinas/farmacologia , Quinolinas/química , Acetamidas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA