Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Atmos Sci Lett ; 19(12): e868, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31191171

RESUMO

Winter 2016/2017 was one of the driest on record for central Europe and the United Kingdom. This was the result of blocked atmospheric circulation with high pressure centred over North-West Europe dominating the winter mean circulation pattern. Using large ensembles of simulated winters, we find that the observed winter 2016/2017 circulation was very similar in pattern and strength to the circulation associated with the top 10% of driest Central European winters. Here, we explore whether seasonal forecasts were able to predict this circulation pattern. Despite the fact that the observed circulation anomaly did not project on to the North Atlantic Oscillation (NAO), we find that forecasts starting in November did predict a high-pressure anomaly over North-Western Europe. We use two independent data sets, and methods, to probe the drivers of this circulation pattern. We find evidence for a Rossby Wave propagating out of the tropical Atlantic where there were anomalous local rainfall anomalies. This case study is another example of real-time seasonal forecast skill for Europe and provides evidence for predictability beyond the NAO pattern.

2.
Inorg Chem ; 47(7): 2674-87, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18318476

RESUMO

The reduction of prochiral ketones catalyzed by Ru(diphosphine)(diamine) complexes has been studied at the DFT-PBE level of theory. Calculations have been conducted on real size systems [trans-Ru(H)2(S, S-dpen)(S-xylbinap) + acetophenone], [trans-Ru(H)2(S, S-dpen)(S-tolbinap) + acetophenone] and [trans-Ru(H)2(S, S-dpen)(S-xylbinap) + cyclohexyl methyl ketone] with the aim of identifying the factors controlling the enantioselectivity in Ru(diphosphine)(diamine) catalysts. The high enantiomeric excess (99%) in the hydrogenation of acetophenone catalyzed by trans-Ru(H)2(S, S-dpen)(S-xylbinap) has been explained in terms of the existence of a stable intermediate along the reaction pathway associated with the (R)-alcohol. The formation of this intermediate is hindered with the competitive pathways, which consequently increases the activation energy for the hydrogen transfer acetophenone/(S)-phenylethanol reaction. For the [trans-Ru(H)2(S, S-dpen)(S-tolbinap) + acetophenone] system, the lower enantioselectivity (i.e. 80%) is rationalized by the smaller differences in the activation energy between the competitive pathways which differentiate between the two diastereomeric approaches of the prochiral ketone. The DFT-PBE results suggest that this reaction is driven to the (R)-product only by the process of binding the acetophenone to the active site of the trans-Ru(H) 2(S, S-dpen)(S-tolbinap) catalyst. For the hydrogenation of cyclohexyl methyl ketone catalyzed by trans-Ru(H)2(S, S-dpen)(S-xylbinap), the low performance in the enantioselective hydrogenation of the dialkyl ketone (i.e. 37%) is again explained by the small differences in the activation and binding energies which are the factors which could effectively differentiate between the two alkyl groups.


Assuntos
Hidrogênio/química , Compostos de Rutênio/química , Catálise , Simulação por Computador , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA