Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 187, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678203

RESUMO

BACKGROUND: Modulator therapies that seek to correct the underlying defect in cystic fibrosis (CF) have revolutionized the clinical landscape. Given the heterogeneous nature of lung disease progression in the post-modulator era, there is a need to develop prediction models that are robust to modulator uptake. METHODS: We conducted a retrospective longitudinal cohort study of the CF Foundation Patient Registry (N = 867 patients carrying the G551D mutation who were treated with ivacaftor from 2003 to 2018). The primary outcome was lung function (percent predicted forced expiratory volume in 1 s or FEV1pp). To characterize the association between ivacaftor initiation and lung function, we developed a dynamic prediction model through covariate selection of demographic and clinical characteristics. The ability of the selected model to predict a decline in lung function, clinically known as an FEV1-indicated exacerbation signal (FIES), was evaluated both at the population level and individual level. RESULTS: Based on the final model, the estimated improvement in FEV1pp after ivacaftor initiation was 4.89% predicted (95% confidence interval [CI]: 3.90 to 5.89). The rate of decline was reduced with ivacaftor initiation by 0.14% predicted/year (95% CI: 0.01 to 0.27). More frequent outpatient visits prior to study entry and being male corresponded to a higher overall FEV1pp. Pancreatic insufficiency, older age at study entry, a history of more frequent pulmonary exacerbations, lung infections, CF-related diabetes, and use of Medicaid insurance corresponded to lower FEV1pp. The model had excellent predictive accuracy for FIES events with an area under the receiver operating characteristic curve of 0.83 (95% CI: 0.83 to 0.84) for the independent testing cohort and 0.90 (95% CI: 0.89 to 0.90) for 6-month forecasting with the masked cohort. The root-mean-square errors of the FEV1pp predictions for these cohorts were 7.31% and 6.78% predicted, respectively, with standard deviations of 0.29 and 0.20. The predictive accuracy was robust across different covariate specifications. CONCLUSIONS: The methods and applications of dynamic prediction models developed using data prior to modulator uptake have the potential to inform post-modulator projections of lung function and enhance clinical surveillance in the new era of CF care.


Assuntos
Aminofenóis , Fibrose Cística , Pulmão , Quinolonas , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Aminofenóis/uso terapêutico , Feminino , Masculino , Estudos Retrospectivos , Estudos Longitudinais , Quinolonas/uso terapêutico , Adulto , Adolescente , Adulto Jovem , Volume Expiratório Forçado/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Criança , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Agonistas dos Canais de Cloreto/uso terapêutico , Valor Preditivo dos Testes , Sistema de Registros , Testes de Função Respiratória/métodos , Progressão da Doença , Estudos de Coortes , Resultado do Tratamento
2.
Environ Adv ; 142023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094913

RESUMO

Background: Cystic fibrosis (CF) is a genetic disease but is greatly impacted by non-genetic (social/environmental and stochastic) influences. Some people with CF experience rapid decline, a precipitous drop in lung function relative to patient- and/or center-level norms. Those who experience rapid decline in early adulthood, compared to adolescence, typically exhibit less severe clinical disease but greater loss of lung function. The extent to which timing and degree of rapid decline are informed by social and environmental determinants of health (geomarkers) is unknown. Methods: A longitudinal cohort study was performed (24,228 patients, aged 6-21 years) using the U.S. CF Foundation Patient Registry. Geomarkers at the ZIP Code Tabulation Area level measured air pollution/respiratory hazards, greenspace, crime, and socioeconomic deprivation. A composite score quantifying social-environmental adversity was created and used in covariate-adjusted functional principal component analysis, which was applied to cluster longitudinal lung function trajectories. Results: Social-environmental phenotyping yielded three primary phenotypes that corresponded to early, middle, and late timing of peak decline in lung function over age. Geographic differences were related to distinct cultural and socioeconomic regions. Extent of peak decline, estimated as forced expiratory volume in 1 s of % predicted/year, ranged from 2.8 to 4.1 % predicted/year depending on social-environmental adversity. Middle decliners with increased social-environmental adversity experienced rapid decline 14.2 months earlier than their counterparts with lower social-environmental adversity, while timing was similar within other phenotypes. Early and middle decliners experienced mortality peaks during early adolescence and adulthood, respectively. Conclusion: While early decliners had the most severe CF lung disease, middle and late decliners lost more lung function. Higher social-environmental adversity associated with increased risk of rapid decline and mortality during young adulthood among middle decliners. This sub-phenotype may benefit from enhanced lung-function monitoring and personalized secondary environmental health interventions to mitigate chemical and non-chemical stressors.

3.
Chest ; 163(6): 1458-1470, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36610667

RESUMO

BACKGROUND: Lung function decline varies significantly in patients with lymphangioleiomyomatosis (LAM), impeding individualized clinical decision-making. RESEARCH QUESTION: Can we aid individualized decision-making in LAM by developing a dynamic prediction model that can estimate the probability of clinically relevant FEV1 decline in patients with LAM before treatment initiation? STUDY DESIGN AND METHODS: Patients observed in the US National Heart, Lung, and Blood Institute (NHLBI) Lymphangioleiomyomatosis Registry were included. Using routinely available variables such as age at diagnosis, menopausal status, and baseline lung function (FEV1 and diffusing capacity of the lungs for carbon monoxide [Dlco]), we used novel stochastic modeling and evaluated predictive probabilities for clinically relevant drops in FEV1. We formed predictive probabilities of transplant-free survival by jointly modeling longitudinal FEV1 and lung transplantation or death events. External validation used the UK Lymphangioleiomyomatosis Natural History cohort. RESULTS: Analysis of the NHLBI Lymphangioleiomyomatosis Registry and UK Lymphangioleiomyomatosis Natural History cohorts consisted of 216 and 185 individuals, respectively. We derived a joint model that accurately estimated the risk of future lung function decline and 5-year probabilities of transplant-free survival in patients with LAM not taking sirolimus (area under the receiver operating characteristic curve [AUC], approximately 0.80). The prediction model provided estimates of forecasted FEV1, rate of FEV1 decline, and probabilities for risk of prolonged drops in FEV1 for untreated patients with LAM with a high degree of accuracy (AUC > 0.80) for the derivation cohort as well as the validation cohort. Our tool is freely accessible at: https://anushkapalipana.shinyapps.io/testapp_v2/. INTERPRETATION: Longitudinal modeling of routine clinical data can allow individualized LAM prognostication and assist in decision-making regarding the timing of treatment initiation.


Assuntos
Neoplasias Pulmonares , Transplante de Pulmão , Linfangioleiomiomatose , Humanos , Linfangioleiomiomatose/tratamento farmacológico , Pulmão , Progressão da Doença , Volume Expiratório Forçado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA