Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 226(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511132

RESUMO

Gamete-level sexual selection of externally fertilising species is usually achieved by modifying sperm behaviour with mechanisms that alter the chemical environment in which gametes perform. In fish, this can be accomplished through the ovarian fluid, a substance released with the eggs at spawning. While the biochemical effects of ovarian fluid in relation to sperm energetics have been investigated, the influence of the physical environment in which sperm compete remains poorly explored. Our objective was therefore to gain insights on the physical structure of this fluid and potential impacts on reproduction. Using soft-matter physics approaches of steady-state and oscillatory viscosity measurements, we subjected wild Atlantic salmon ovarian fluids to variable shear stresses and frequencies resembling those exerted by sperm swimming through the fluid near eggs. We show that this fluid, which in its relaxed state is a gel-like substance, displays a non-Newtonian viscoelastic and shear-thinning profile, where the viscosity decreases with increasing shear rates. We concurrently find that this fluid obeys the Cox-Merz rule below 7.6 Hz and infringes it above this level, thus indicating a shear-thickening phase where viscosity increases provided it is probed gently enough. This suggests the presence of a unique frequency-dependent structural network with relevant implications for sperm energetics and fertilisation dynamics. This article has an associated ECR Spotlight interview with Marco Graziano.


Assuntos
Salmo salar , Animais , Masculino , Viscosidade , Sêmen , Motilidade dos Espermatozoides , Interações Espermatozoide-Óvulo
2.
Langmuir ; 38(15): 4617-4624, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35390253

RESUMO

Core-sheath fibers have numerous applications ranging from composite materials for advanced manufacturing to materials for drug delivery and regenerative medicine. Here, a simple and tunable approach for the generation of core-sheath fibers from immiscible solutions of dextran and polyethylene oxide is described. This approach exploits the entanglement of polymer molecules within the dextran and polyethylene oxide phases for free surface spinning into dry fibers. The mechanism by which these core-sheath fibers are produced after contact with a solid substrate (such as a microneedle) involves complex flows of the phase-separating polymer solutions, giving rise to a liquid-liquid core-sheath flow that is drawn into a liquid bridge. This liquid bridge then elongates into a core-sheath fiber through extensional flow as the contacting substrate is withdrawn. The core-sheath structure of the fibers produced by this approach is confirmed by attenuated total reflection Fourier-transform infrared spectroscopy and confocal microscopy. Tuning of the core diameter is also demonstrated by varying the weight percentage of dextran added to the reservoir from which the fibers are formed.


Assuntos
Dextranos , Polímeros , Polietilenoglicóis , Polímeros/química , Água
4.
Soft Matter ; 14(3): 448-459, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29261208

RESUMO

In this work we generate stable and monodisperse water-in-oil emulsions using a co-flowing geometry that produced droplet sizes between 13 µm and 250 µm. The drops survived transfer to NMR tubes and were stable for at least 26 hours, enabling the performance of pulsed-field-gradient NMR experiments in addition to microscopy. The drops sizes achieved as a function of flow rate agree well with a simple model for droplet generation: this yields a precise measure of the interfacial tension. The design of a cell mimetic environment with nano-scale confinement has also been demonstrated with diffusion measurements on macromolecules (PEG and Ficoll70) within droplets that are further structured internally using agarose gel networks. Containing the agarose gel in droplets appears to provide very reproducible and homogeneous network environments, enabling quantitative agreement of Ficoll70 dynamics with a theoretical model, with no fit parameters, and, with PEG, yielding a systematic polymer-size dependent slowing down in the network. This is in contrast with bulk agarose, where identical macromolecular diffusion measurements indicate the presence of heterogeneities with water pockets.

5.
J Chem Phys ; 147(11): 114902, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938832

RESUMO

We have examined the effect of crowder particle charge on macromolecular structure, studied via small-angle neutron scattering, and translational dynamics, studied via pulsed-field gradient NMR, in addition to bulk viscosity measurements, in a polymer macromolecule (polyethylene glycol)-nanoparticle crowder (polysucrose, Ficoll70) model system, in the case where polymer size and crowder size are comparable. While there are modest effects of crowder charge on polymer dynamics at relatively low packing fractions, there is only a tiny effect at the high packing fractions that represent the limit of molecular crowding. We find, via different measures of macromolecular mobility, that the mobility of the flexible polymer in the crowding limit is 10-100 times larger than that of the compact, spherical crowder in spite of their similar size, implying that the flexible polymer chain is able to squeeze through crowder interstices.

6.
J Chem Phys ; 147(7): 074901, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28830156

RESUMO

We apply pulsed-field-gradient NMR (PFG NMR) technique to measure the translational diffusion for both uncharged and charged polysaccharide (Ficoll70) in water. Analysis of the data indicates that the NMR signal attenuation above a certain packing fraction can be adequately fitted with a bi-exponential function. The self-diffusion measurements also show that the Ficoll70, an often-used compact, spherical polysucrose molecule, is itself nonideal, exhibiting signs of both softness and attractive interactions in the form of a stable suspension consisting of monomers and clusters. Further, we can quantify the fraction of monomers and clusters. This work strengthens the picture of the existence of a bound water layer within and around a porous Ficoll70 particle.

7.
Phys Rev Lett ; 118(9): 097801, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306301

RESUMO

The effect of particles on the behavior of polymers in solution is important in a number of important phenomena such as the effect of "crowding" proteins in cells, colloid-polymer mixtures, and nanoparticle "fillers" in polymer solutions and melts. In this Letter, we study the effect of spherical inert nanoparticles (which we refer to as "crowders") on the diffusion coefficient and radius of gyration of polymers in solution using pulsed-field-gradient NMR and small-angle neutron scattering (SANS), respectively. The diffusion coefficients exhibit a plateau below a characteristic polymer concentration, which we identify as the overlap threshold concentration c^{⋆}. Above c^{⋆}, in a crossover region between the dilute and semidilute regimes, the (long-time) self-diffusion coefficients are found, universally, to decrease exponentially with polymer concentration at all crowder packing fractions, consistent with a structural basis for the long-time dynamics. The radius of gyration obtained from SANS in the crossover regime changes linearly with an increase in polymer concentration, and must be extrapolated to c^{⋆} in order to obtain the radius of gyration of an individual polymer chain. When the polymer radius of gyration and crowder size are comparable, the polymer size is very weakly affected by the presence of crowders, consistent with recent computer simulations. There is significant chain compression, however, when the crowder size is much smaller than the polymer radius gyration.

8.
Prog Nucl Magn Reson Spectrosc ; 94-95: 1-10, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27247282

RESUMO

Label-free methods to obtain hydrodynamic size from diffusion measurements are desirable in environments that contain multiple macromolecular species at a high total concentration: one example is the crowded cellular environment. In complex, multi-species macromolecular environments - in this article, we feature aqueous systems involving polymers, surfactants and proteins - the link between dynamics and size is harder to unpack due to macromolecular crowding and confinement. In this review, we demonstrate that the pulsed-field gradient NMR technique, with its spectral separation of different chemical components, is ideal for studying the dynamics of the entire system simultaneously and without labelling, in a wide range of systems. The simultaneous measurement of the dynamics of multiple components allows for internal consistency checks and enables quantitative statements about the link between macromolecular dynamics, size, complex formation and crowding in soft materials.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Polímeros/química , Proteínas/química , Tensoativos/química , Fenômenos Biofísicos , Difusão , Ficoll/química , Polietilenoglicóis/química , Dodecilsulfato de Sódio/química , Água
9.
Langmuir ; 24(8): 3747-51, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18302433

RESUMO

A method to prepare monodisperse and simultaneously NMR-visible and fluorescent colloidal particles is described, and a systematic approach to obtain spectrally resolved diffusion coefficient for every component in a monodisperse colloidal suspension is presented. We also prepared bidisperse colloidal suspensions, where each colloid component has a distinct NMR spectral signature, and obtained the diffusion coefficients of both colloid species simultaneously in concentrated colloidal suspensions, with volume fractions between 20 and 50%. The colloidal model system developed in this work enables the study of colloidal phase behavior in binary mixtures for different number and size ratios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA