Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Biomacromolecules ; 25(7): 4492-4509, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38910355

RESUMO

A major shortcoming associated with the application of enzymes in drug synergism originates from the lack of site-specific, multifunctional nanomedicine. This study introduces catalytic nanocompartments (CNCs) made of a mixture of PDMS-b-PMOXA diblock copolymers, decorated with glycooligomer tethers comprising eight mannose-containing repeating units and coencapsulating two enzymes, providing multifunctionality by their in situ parallel reactions. Beta-glucuronidase (GUS) serves for local reactivation of the drug hymecromone, while glucose oxidase (GOx) induces cell starvation through glucose depletion and generation of the cytotoxic H2O2. The insertion of the pore-forming peptide, melittin, facilitates diffusion of substrates and products through the membranes. Increased cell-specific internalization of the CNCs results in a substantial decrease in HepG2 cell viability after 24 h, attributed to simultaneous production of hymecromone and H2O2. Such parallel enzymatic reactions taking place in nanocompartments pave the way to achieve efficient combinatorial cancer therapy by enabling localized drug production along with reactive oxygen species (ROS) elevation.


Assuntos
Glucose Oxidase , Peróxido de Hidrogênio , Humanos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Células Hep G2 , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Glucuronidase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Catálise , Espécies Reativas de Oxigênio/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo
2.
Adv Drug Deliv Rev ; 211: 115354, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38857762

RESUMO

One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.

3.
Proc Natl Acad Sci U S A ; 121(22): e2219470121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776365

RESUMO

NRF2 (nuclear factor erythroid-2-related factor 2) is a key regulator of genes involved in the cell's protective response to oxidative stress. Upon activation by disturbed redox homeostasis, NRF2 promotes the expression of metabolic enzymes to eliminate reactive oxygen species (ROS). Cell internalization of peroxisome-like artificial organelles that harbor redox-regulating enzymes was previously shown to reduce ROS-induced stress and thus cell death. However, if and to which extent ROS degradation by such nanocompartments interferes with redox signaling pathways is largely unknown. Here, we advance the design of H2O2-degrading artificial nano-organelles (AnOs) that exposed surface-attached cell penetrating peptides (CPP) for enhanced uptake and were equipped with a fluorescent moiety for rapid visualization within cells. To investigate how such AnOs integrate in cellular redox signaling, we engineered leukemic K562 cells that report on NRF2 activation by increased mCherry expression. Once internalized, ROS-metabolizing AnOs dampen intracellular NRF2 signaling upon oxidative injury by degrading H2O2. Moreover, intracellular AnOs conferred protection against ROSinduced cell death in conditions when endogenous ROS-protection mechanisms have been compromised by depletion of glutathione or knockdown of NRF2. We demonstrate CPP-facilitated AnO uptake and AnO-mediated protection against ROS insults also in the T lymphocyte population of primary peripheral blood mononuclear cells from healthy donors. Overall, our data suggest that intracellular AnOs alleviated cellular stress by the on-site reduction of ROS.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células K562 , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Organelas/metabolismo
4.
ACS Omega ; 9(16): 17966-17976, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680325

RESUMO

The addition of nanomaterials to improve product properties has become a matter of course for many commodities: e.g., detergents, cosmetics, and food products. While this practice improves product characteristics, the increasing exposure and potential impact of nanomaterials (<100 nm) raise concerns regarding both the human body and the environment. Special attention should be taken for vulnerable individuals such as those who are ill, elder, or newborns. But detecting and quantifying nanoparticles in complex food matrices like early life nutrition (ELN) poses a significant challenge due to the presence of additional particles, emulsion-droplets, or micelles. There is a pressing demand for standardized protocols for nanoparticle quantification and the specification of "nanoparticle-free" formulations. To address this, silica nanoparticles (SiNPs), commonly used as anticaking agents (AA) in processed food, were employed as a model system to establish characterization methods with different levels of accuracy and sensitivity versus speed, sample handling, and automatization. Different acid treatments were applied for sample digestion, followed by size exclusion chromatography. Morphology, size, and number of NPs were measured by transmission electron microscopy, and the amount of Si was determined by microwave plasma atomic emission spectrometry. This successfully enabled distinguishing SiNP content in ELN food formulations with 2-4% AA from AA-free formulations and sorting SiNPs with diameters of 20, 50, and 80 nm. Moreover, the study revealed the significant influence of the ELN matrix on sample preparation, separation, and characterization steps, necessitating method adaptations compared to the reference (SiNP in water). In the future, we expect these methods to be implemented in standard quality control of formulation processes, which demand high-throughput analysis and automated evaluation.

5.
J Colloid Interface Sci ; 664: 338-348, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479270

RESUMO

Combination therapies demand co-delivery platforms with efficient entrapment of distinct payloads and specific delivery to cells and possibly organelles. Herein, we introduce the combination of two therapeutic modalities, gene and photodynamic therapy, in a purely peptidic platform. The simultaneous formation and cargo loading of the multi-micellar platform is governed by self-assembly at the nanoscale. The multi-micellar architecture of the nanocarrier and the positive charge of its constituent micelles offer controlled dual loading capacity with distinct locations for a hydrophobic photosensitizer (PS) and negatively charged antisense oligonucleotides (ASOs). Moreover, the nuclear localization signal (NLS) sequence built-in the peptide targets PS + ASO-loaded nanocarriers to the nucleus. Breast cancer cells treated with nanocarriers demonstrated photo-triggered enhancement of radical oxygen species (ROS) associated with increased cell death. Besides, delivery of ASO payloads resulted in up to 90 % knockdown of Bcl-2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. Simultaneous delivery of PS and ASO elicited synergistic apoptosis to an extent that could not be reached by singly loaded nanocarriers or the free form of the drugs. Both, the distinct location of loaded compounds that prevents them from interfering with each other, and the highly efficient cellular delivery support the great potential of this versatile peptide platform in combination therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Neoplasias/tratamento farmacológico , Apoptose , Micelas , Linhagem Celular Tumoral
6.
ACS Appl Mater Interfaces ; 16(10): 13291-13304, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422470

RESUMO

Solid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules. Resorcinarene capsules provide a large cavity with affinity specifically for cationic and polyhydroxylated molecules. While the capsules are stable in apolar organic solvents, they disassemble when placed in polar solvents, which limits their application. Here, a solvent-assisted approach was used for copolymer membrane deposition on solid support and simultaneous insertion of the resorcinarene monomers. By investigation of the molecular factors and conditions supporting the codeposition of the copolymer and resorcinarene monomers, a stable hybrid membrane was formed. The hydrophobic domain of the membrane played a crucial role by providing a sufficiently thick and apolar layer, allowing for the self-assembly of the capsules. The capsules were functional inside the membranes by encapsulating cationic guests from the aqueous environment. The amount of resorcinarene capsules in the hybrid membranes was quantified by a combination of quartz-crystal microbalance with dissipation and liquid chromatography-mass spectrometry, while the membrane topography and layer composition were analyzed by atomic force microscopy and neutron reflectometry. Functional resorcinarene capsules inside SSPMs can serve as dynamic sensors and potentially as cross-membrane transporters, thus holding great promise for the development of smart surfaces.

7.
Nano Lett ; 24(9): 2698-2704, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408754

RESUMO

Artificial organelles (AnOs) are in the spotlight as systems to supplement biochemical pathways in cells. While polymersome-based artificial organelles containing enzymes to reduce reactive oxygen species (ROS) are known, applications requiring control of their enzymatic activity and cell-targeting to promote intracellular ROS detoxification are underexplored. Here, we introduce advanced AnOs where the chemical composition of the membrane supports the insertion of pore-forming melittin, enabling molecular exchange between the AnO cavity and the environment, while the encapsulated lactoperoxidase (LPO) maintains its catalytic function. We show that H2O2 outside AnOs penetrates through the melittin pores and is rapidly degraded by the encapsulated enzyme. As surface attachment of cell-penetrating peptides facilitates AnOs uptake by cells, electron spin resonance revealed a remarkable enhancement in intracellular ROS detoxification by these cell-targeted AnOs compared to nontargeted AnOs, thereby opening new avenues for a significant reduction of oxidative stress in cells.


Assuntos
Células Artificiais , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Meliteno , Estresse Oxidativo
8.
Biomacromolecules ; 25(2): 754-766, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38267014

RESUMO

As current chemo- and photodynamic cancer therapies are associated with severe side effects due to a lack of specificity and to systemic toxicity, innovative solutions in terms of targeting and controlled functionality are in high demand. Here, we present the development of a polymersome nanocarrier equipped with targeting molecules and loaded with photosensitizers for efficient uptake and light-activated cell killing. Polymersomes were self-assembled in the presence of photosensitizers from a mixture of nonfunctionalized and functionalized PDMS-b-PMOXA diblock copolymers, the latter designed for coupling with targeting ligands. By encapsulation inside the polymersomes, the photosensitizer Rose Bengal was protected, and its uptake into cells was mediated by the nanocarrier. Inhibitor of fibroblast activation protein α (FAPi), a ligand for FAP, was attached to the polymersomes' surface and improved their uptake in MCF-7 breast cancer cells expressing relatively high levels of FAP on their surface. Once internalized by MCF-7, irradiation of Rose Bengal-loaded FAPi-polymersomes generated reactive oxygen species at levels high enough to induce cell death. By combining photosensitizer encapsulation and specific targeting, polymersomes represent ideal candidates as therapeutic nanocarriers in cancer treatment.


Assuntos
Endopeptidases , Proteínas de Membrana , Fármacos Fotossensibilizantes , Polímeros , Humanos , Fármacos Fotossensibilizantes/farmacologia , Polímeros/farmacologia , Rosa Bengala/farmacologia , Morte Celular , Linhagem Celular Tumoral
9.
Adv Sci (Weinh) ; 11(8): e2305837, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984885

RESUMO

The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.


Assuntos
Células Artificiais , Polímeros/química , Organelas
10.
Adv Sci (Weinh) ; 11(11): e2307103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158637

RESUMO

Understanding the mechanisms of antibiotic resistance is critical for the development of new therapeutics. Traditional methods for testing bacteria are often limited in their efficiency and reusability. Single bacterial cells can be studied at high throughput using double emulsions, although the lack of control over the oil shell permeability and limited access to the droplet interior present serious drawbacks. Here, a straightforward strategy for studying bacteria-encapsulating double emulsion-templated giant unilamellar vesicles (GUVs) is introduced. This microfluidic approach serves to simultaneously load bacteria inside synthetic GUVs and to permeabilize their membrane with the pore-forming peptide melittin. This enables antibiotic delivery or the influx of fresh medium into the GUV lumen for highly parallel cultivation and antimicrobial efficacy testing. Polymer-based GUVs proved to be efficient culture and analysis microvessels, as microfluidics allow easy selection and encapsulation of bacteria and rapid modification of culture conditions for antibiotic development. Further, a method for in situ profiling of biofilms within GUVs for high-throughput screening is demonstrated. Conceivably, synthetic GUVs equipped with biopores can serve as a foundation for the high-throughput screening of bacterial colony interactions during biofilm formation and for investigating the effect of antibiotics on biofilms.


Assuntos
Ensaios de Triagem em Larga Escala , Microfluídica , Permeabilidade , Antibacterianos/farmacologia , Lipossomas Unilamelares
11.
Proc Natl Acad Sci U S A ; 120(27): e2301279120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364098

RESUMO

The design of stimuli-responsive systems in nanomedicine arises from the challenges associated with the unsolved needs of current molecular drug delivery. Here, we present a delivery system with high spatiotemporal control and tunable release profiles. The design is based on the combination of an hydrophobic synthetic molecular rotary motor and a PDMS-b-PMOXA diblock copolymer to create a responsive self-assembled system. The successful incorporation and selective activation by low-power visible light (λ = 430 nm, 6.9 mW) allowed to trigger the delivery of a fluorescent dye with high efficiencies (up to 75%). Moreover, we proved the ability to turn on and off the responsive behavior on demand over sequential cycles. Low concentrations of photoresponsive units (down to 1 mol% of molecular motor) are shown to effectively promote release. Our system was also tested under relevant physiological conditions using a lung cancer cell line and the encapsulation of an Food and Drug Administration (FDA)-approved drug. Similar levels of cell viability are observed compared to the free given drug showing the potential of our platform to deliver functional drugs on request with high efficiency. This work provides an important step for the application of synthetic molecular machines in the next generation of smart delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Polímeros/química , Corantes Fluorescentes , Linhagem Celular , Interações Hidrofóbicas e Hidrofílicas , Portadores de Fármacos/química
12.
Commun Biol ; 6(1): 478, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137966

RESUMO

Extracellular vesicles (EVs) are highly interesting for the design of next-generation therapeutics. However, their preparation methods face challenges in standardization, yield, and reproducibility. Here, we describe a highly efficient and reproducible EV preparation method for monodisperse nano plasma membrane vesicles (nPMVs), which yields 10 to 100 times more particles per cell and hour than conventional EV preparation methods. nPMVs are produced by homogenizing giant plasma membrane vesicles following cell membrane blebbing and apoptotic body secretion induced by chemical stressors. nPMVs showed no significant differences compared to native EVs from the same cell line in cryo-TEM analysis, in vitro cellular interactions, and in vivo biodistribution studies in zebrafish larvae. Proteomics and lipidomics, on the other hand, suggested substantial differences consistent with the divergent origin of these two EV types and indicated that nPMVs primarily derive from apoptotic extracellular vesicles. nPMVs may provide an attractive source for developing EV-based pharmaceutical therapeutics.


Assuntos
Vesículas Extracelulares , Peixe-Zebra , Animais , Reprodutibilidade dos Testes , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Membrana Celular/metabolismo
13.
Macromol Biosci ; 23(8): e2200474, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36949011

RESUMO

Polymeric nano- and microscale materials bear significant potential in manifold applications related to biomedicine. This is owed not only to the large chemical diversity of the constituent polymers, but also to the various morphologies these materials can achieve, ranging from simple particles to intricate self-assembled structures. Modern synthetic polymer chemistry permits the tuning of many physicochemical parameters affecting the behavior of polymeric nano- and microscale materials in the biological context. In this Perspective, an overview of the synthetic principles underlying the modern preparation of these materials is provided, aiming to demonstrate how advances in and ingenious implementations of polymer chemistry fuel a range of applications, both present and prospective.


Assuntos
Polímeros , Polímeros/química , Estudos Prospectivos
14.
Small ; 19(13): e2202818, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35869606

RESUMO

Signal transduction is pivotal for the transfer of information between and within living cells. The composition and spatial organization of specified compartments are key to propagating soluble signals. Here, a high-throughput platform mimicking multistep signal transduction which is based on a geometrically defined array of immobilized catalytic nanocompartments (CNCs) that consist of distinct polymeric nanoassemblies encapsulating enzymes and DNA or enzymes alone is presented. The dual role of single entities or tandem CNCs in providing confined but communicating spaces for complex metabolic reactions and in protecting encapsulated compounds from denaturation is explored. To support a controlled spatial organization of CNCs, CNCs are patterned by means of DNA hybridization to a microprinted glass surface. Specifically, CNC-functionalized DNA microarrays are produced where individual reaction compartments are kept in close proximity by a distinct geometrical arrangement to promote effective communication. Besides a remarkable versatility and robustness, the most prominent feature of this platform is the reversibility of DNA-mediated CNC-anchoring which renders it reusable. Micropatterns of polymer-based nanocompartment assemblies offer an ideal scaffold for the development of the next generation responsive and communicative soft-matter analytical devices for applications in catalysis and medicine.


Assuntos
DNA , Polímeros , DNA/metabolismo , Hibridização de Ácido Nucleico , Catálise , Análise de Sequência com Séries de Oligonucleotídeos
15.
Adv Healthc Mater ; 11(23): e2202100, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208079

RESUMO

Cell-derived vesicles retain the cytoplasm and much of the native cell membrane composition. Therefore, they are attractive for investigations of membrane biophysics, drug delivery systems, and complex molecular factories. However, their fragility and aggregation limit their applications. Here, the mechanical properties and stability of giant plasma membrane vesicles (GPMVs) are enhanced by decorating them with a specifically designed diblock copolymer, cholesteryl-poly[2-aminoethyl methacrylate-b-poly(ethylene glycol) methyl ether acrylate]. When cross-linked, this polymer brush enhances the stability of the GPMVs. Furthermore, the pH-responsiveness of the copolymer layer allows for a controlled cargo loading/release, which may enable various bioapplications. Importantly, the cross-linked-copolymer GPMVs are not cytotoxic and preserve in vitro membrane integrity and functionality. This effective strategy to equip the cell-derived vesicles with stimuli-responsive cross-linkable copolymers is expected to open a new route to the stabilization of natural membrane systems and overcome barriers to biomedical applications.


Assuntos
Polímeros , Biofísica
16.
Macromol Biosci ; 22(11): e2200270, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36100461

RESUMO

Polymer assemblies on the nanoscale represent a powerful toolbox for the design of theranostic systems when combined with both therapeutic compounds and diagnostic reporting ones. Here, recent advances in the design of theranostic systems for various diseases, containing-in their architecture-either polymers or polymer assemblies as one of the building blocks are presented. This review encompasses the general principles of polymer self-assembly, from the production of adequate copolymers up to supramolecular assemblies with theranostic functionality. Such polymer nanoassemblies can be further tailored through the incorporation of inorganic nanoparticles to endow them with multifunctional therapeutic and/or diagnostic features. Systems that change their architecture or properties in the presence of stimuli are selected, as responsivity to changes in the environment is a key factor for enhancing efficiency. Such theranostic systems are based on the intrinsic properties of copolymers or one of the other components. In addition, systems with a more complex architecture, such as multicompartments, are presented. Selected systems indicate the advantages of such theranostic approaches and provide a basis for further developments in the field.


Assuntos
Nanopartículas , Polímeros , Polímeros/uso terapêutico , Medicina de Precisão , Nanopartículas/uso terapêutico , Nanomedicina Teranóstica
17.
Nano Lett ; 22(13): 5077-5085, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771654

RESUMO

Domain separation is crucial for proper cellular function and numerous biomedical technologies, especially artificial cells. While phase separation in hybrid membranes containing lipids and copolymers is well-known, the membranes' overall stability, limited by the lipid part, is hindering the technological applications. Here, we introduce a fully synthetic planar membrane undergoing phase separation into domains embedded within a continuous phase. The mono- and bilayer membranes are composed of two amphiphilic diblock copolymers (PEO45-b-PEHOx20 and PMOXA10-b-PDMS25) with distinct properties and mixed at various concentrations. The molar ratio of the copolymers in the mixture and the nature of the solid support were the key parameters inducing nanoscale phase separation of the planar membranes. The size of the domains and resulting morphology of the nanopatterned surfaces were tailored by adjusting the molar ratios of the copolymers and transfer conditions. Our approach opens new avenues for the development of biomimetic planar membranes with a nanoscale texture.


Assuntos
Células Artificiais , Polímeros , Membranas Artificiais
18.
Biomater Sci ; 10(15): 4309-4323, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35771211

RESUMO

The design of non-viral vectors that efficiently deliver genetic materials into cells, in particular to the nucleus, remains a major challenge in gene therapy and vaccine development. To tackle the problems associated with cellular uptake and nuclear targeting, here we introduce a delivery platform based on the self-assembly of an amphiphilic peptide carrying an N-terminal KRKR sequence that functions as a nuclear localization signal (NLS). By means of a single-step self-assembly process, the amphiphilic peptides afford the generation of NLS-functionalized multicompartment micellar nanostructures that can embed various oligonucleotides between their individual compartments. Detailed physicochemical, cellular and ultrastructural analyses demonstrated that integrating an NLS in the hydrophilic domain of the peptide along with tuning its hydrophobic domain led to self-assembled DNA-loaded multicompartment micelles (MCMs) with enhanced cellular uptake and nuclear translocation. We showed that the nuclear targeting ensued via the NLS interaction with the nuclear transport receptors of the karyopherin family. Importantly, we observed that the treatment of MCF-7 cells with NLS-MCMs loaded with anti-BCL2 antisense oligonucleotides resulted in up to 86% knockdown of BCL2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. We envision that this platform can be used to efficiently entrap and deliver diverse genetic payloads to the nucleus and find applications in basic research and biomedicine.


Assuntos
Sinais de Localização Nuclear , Oligonucleotídeos , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Micelas , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Oligonucleotídeos/metabolismo , Peptídeos/química
19.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628527

RESUMO

Nano- and micrometer-sized compartments composed of synthetic polymers are designed to mimic spatial and temporal divisions found in nature. Self-assembly of polymers into compartments such as polymersomes, giant unilamellar vesicles (GUVs), layer-by-layer (LbL) capsules, capsosomes, or polyion complex vesicles (PICsomes) allows for the separation of defined environments from the exterior. These compartments can be further engineered through the incorporation of (bio)molecules within the lumen or into the membrane, while the membrane can be decorated with functional moieties to produce catalytic compartments with defined structures and functions. Nanometer-sized compartments are used for imaging, theranostic, and therapeutic applications as a more mechanically stable alternative to liposomes, and through the encapsulation of catalytic molecules, i.e., enzymes, catalytic compartments can localize and act in vivo. On the micrometer scale, such biohybrid systems are used to encapsulate model proteins and form multicompartmentalized structures through the combination of multiple compartments, reaching closer to the creation of artificial organelles and cells. Significant progress in therapeutic applications and modeling strategies has been achieved through both the creation of polymers with tailored properties and functionalizations and novel techniques for their assembly.


Assuntos
Polímeros , Lipossomas Unilamelares , Catálise , Íons , Polímeros/química , Proteínas
20.
Langmuir ; 38(21): 6561-6570, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35580858

RESUMO

Combining amphiphilic block copolymers and phospholipids opens new opportunities for the preparation of artificial membranes. The chemical versatility and mechanical robustness of polymers together with the fluidity and biocompatibility of lipids afford hybrid membranes with unique properties that are of great interest in the field of bioengineering. Owing to its straightforwardness, the solvent-assisted method (SA) is particularly attractive for obtaining solid-supported membranes. While the SA method was first developed for lipids and very recently extended to amphiphilic block copolymers, its potential to develop hybrid membranes has not yet been explored. Here, we tailor the SA method to prepare solid-supported polymer-lipid hybrid membranes by combining a small library of amphiphilic diblock copolymers poly(dimethyl siloxane)-poly(2-methyl-2-oxazoline) and poly(butylene oxide)-block-poly(glycidol) with phospholipids commonly found in cell membranes including 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, sphingomyelin, and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl). The optimization of the conditions under which the SA method was applied allowed for the formation of hybrid polymer-lipid solid-supported membranes. The real-time formation and morphology of these hybrid membranes were evaluated using a combination of quartz crystal microbalance and atomic force microscopy. Depending on the type of polymer-lipid combination, significant differences in membrane coverage, formation of domains, and quality of membranes were obtained. The use of the SA method for a rapid and controlled formation of solid-supported hybrid membranes provides the basis for developing customized artificial hybrid membranes.


Assuntos
Membranas Artificiais , Polímeros , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Fosfolipídeos/química , Polímeros/química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA