Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Alzheimers Dement (N Y) ; 9(4): e12429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023622

RESUMO

INTRODUCTION: The risk of developing Alzheimer's disease is associated with genes involved in microglial function. Inositol polyphosphate-5-phosphatase (INPP5D), which encodes Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is a risk gene expressed in microglia. Because SHIP1 binds receptor immunoreceptor tyrosine-based inhibitory motifs (ITIMs), competes with kinases, and converts PI(3,4,5)P3 to PI(3,4)P2, it is a negative regulator of microglia function. Validated inhibitors are needed to evaluate SHIP1 as a potential therapeutic target. METHODS: We identified inhibitors and screened the enzymatic domain of SHIP1. A protein construct containing two domains was used to evaluate enzyme inhibitor potency and selectivity versus SHIP2. Inhibitors were tested against a construct containing all ordered domains of the human and mouse proteins. A cellular thermal shift assay (CETSA) provided evidence of target engagement in cells. Phospho-AKT levels provided further evidence of on-target pharmacology. A high-content imaging assay was used to study the pharmacology of SHIP1 inhibition while monitoring cell health. Physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to select a compound suitable for in vivo studies. RESULTS: SHIP1 inhibitors displayed a remarkable array of activities and cellular pharmacology. Inhibitory potency was dependent on the protein construct used to assess enzymatic activity. Some inhibitors failed to engage the target in cells. Inhibitors that were active in the CETSA consistently destabilized the protein and reduced pAKT levels. Many SHIP1 inhibitors were cytotoxic either at high concentration due to cell stress or they potently induced cell death depending on the compound and cell type. One compound activated microglia, inducing phagocytosis at concentrations that did not result in significant cell death. A pharmacokinetic study demonstrated brain exposures in mice upon oral administration. DISCUSSION: 3-((2,4-Dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine activated primary mouse microglia and demonstrated exposures in mouse brain upon oral dosing. Although this compound is our recommended chemical probe for investigating the pharmacology of SHIP1 inhibition at this time, further optimization is required for clinical studies. Highlights: Cellular thermal shift assay (CETSA) and signaling (pAKT) assays were developed to provide evidence of src homology 2 (SH2) domain-contaning inositol phosphatase 1 (SHIP1) target engagement and on-target activity in cellular assays.A phenotypic high-content imaging assay with simultaneous measures of phagocytosis, cell number, and nuclear intensity was developed to explore cellular pharmacology and monitor cell health.SHIP1 inhibitors demonstrate a wide range of activity and cellular pharmacology, and many reported inhibitors are cytotoxic.The chemical probe 3-((2,4-dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine is recommended to explore SHIP1 pharmacology.

2.
Curr Top Med Chem ; 14(3): 294-303, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24283973

RESUMO

The continued development of computational and synthetic methods has enabled the enumeration or preparation of a nearly endless universe of chemical structures. Nevertheless, the ability of this chemical universe to deliver small molecules that can both modulate biological targets and have drug-like physicochemical properties continues to be a topic of interest to the pharmaceutical industry and academic researchers alike. The chemical space described by public, commercial, in-house and virtual compound collections has been interrogated by multiple approaches including biochemical, cellular and virtual screening, diversity analysis, and in-silico profiling. However, current drugs and known chemical probes derived from these efforts are contained within a remarkably small volume of the predicted chemical space. Access to more diverse classes of chemical scaffolds that maintain the properties relevant for drug discovery is certainly needed to meet the increasing demands for pharmaceutical innovation. The Lilly Open Innovation Drug Discovery platform (OIDD) was designed to tackle barriers to innovation through the identification of novel molecules active in relevant disease biology models. In this article we will discuss several computational approaches towards describing novel, biologically active, drug-like chemical space and illustrate how the OIDD program may facilitate access to previously untapped molecules that may aid in the search for innovative pharmaceuticals.


Assuntos
Descoberta de Drogas/métodos , Biologia Computacional , Humanos
3.
J Biomol Screen ; 16(6): 588-602, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21521801

RESUMO

Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.


Assuntos
Descoberta de Drogas , Fenótipo , Animais , Apolipoproteínas E/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Insulina/metabolismo , Secreção de Insulina , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Nocodazol/farmacologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Proteínas Wnt/metabolismo
4.
Bioorg Med Chem Lett ; 17(13): 3544-9, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17482463

RESUMO

Structure-activity relationship studies are described, which led to the discovery of novel selective estrogen receptor modulators (SERMs) for the potential treatment of uterine fibroids. The SAR studies focused on limiting brain exposure and were guided by computational properties. Compounds with limited impact on the HPO axis were selected using serum estrogen levels as a biomarker for ovarian stimulation.


Assuntos
Leiomioma/tratamento farmacológico , Ovário/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Estrogênios/sangue , Feminino , Humanos , Modelos Químicos , Ovário/metabolismo , Ratos , Ratos Sprague-Dawley , Moduladores Seletivos de Receptor Estrogênico/química , Software , Relação Estrutura-Atividade
5.
Clin Cancer Res ; 8(10): 3270-5, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12374698

RESUMO

The selective estrogen receptor modulator arzoxifene and the rexinoid LG 100268 were active not only as single agents for prevention and treatment of breast cancer in the rat model that uses nitrosomethylurea as the carcinogen but also showed striking synergy, both preventively and therapeutically, in a series of six experiments with a total of 465 rats. Mechanistic studies in cell culture reported here suggest that enhancement of stromal-epithelial interactions may contribute to this synergy. The possible clinical use of the combination of arzoxifene and LG 100268 for prevention of breast cancer in women at high risk, for treatment of women in the adjuvant setting, or for treatment of end-stage disease should now be considered.


Assuntos
Anticarcinógenos/uso terapêutico , Neoplasias Mamárias Experimentais/prevenção & controle , Ácidos Nicotínicos/uso terapêutico , Piperidinas/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tetra-Hidronaftalenos/uso terapêutico , Tiofenos/uso terapêutico , Animais , Células Cultivadas , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Metilnitrosoureia , Invasividade Neoplásica , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Ratos , Células Estromais/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA