Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Chem ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769366

RESUMO

Electrophilic halogenation is a widely used tool employed by medicinal chemists to either pre-functionalize molecules for further diversity or incorporate a halogen atom into drugs or drug-like compounds to solve metabolic problems or modulate off-target effects. Current methods to increase the power of halogenation rely on either the invention of new reagents or activating commercially available reagents with various additives such as Lewis or Brønsted acids, Lewis bases and hydrogen-bonding activators. There is a high demand for new reagents that can halogenate otherwise unreactive compounds under mild conditions. Here we report the invention of a class of halogenating reagents based on anomeric amides, taking advantage of the energy stored in the pyramidalized nitrogen of N-X anomeric amides as a driving force. These robust halogenating methods are compatible with a variety of functional groups and heterocycles, as exemplified on over 50 compounds (including 13 gram-scale examples and 1 flow chemistry scale-up).

2.
Org Lett ; 26(11): 2276-2281, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38467055

RESUMO

A simple protocol is outlined herein for rapid access to enantiopure unnatural amino acids (UAAs) from trivial glutamate and aspartate precursors. The method relies on Ag/Ni-electrocatalytic decarboxylative coupling and can be rapidly conducted in parallel (24 reactions at a time) to ascertain coupling viability followed by scale-up for the generation of useful quantities of UAAs for exploratory studies.


Assuntos
Aminoácidos , Aminoácidos/química
3.
Angew Chem Int Ed Engl ; 63(8): e202314617, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38181042

RESUMO

There is a pressing need, particularly in the field of drug discovery, for general methods that will enable direct coupling of tertiary alkyl fragments to (hetero)aryl halides. Herein a uniquely powerful and simple set of conditions for achieving this transformation with unparalleled generality and chemoselectivity is disclosed. This new protocol is placed in context with other recently reported methods, applied to simplify the routes of known bioactive building blocks molecules, and scaled up in both batch and flow. The role of pyridine additive as well as the mechanism of this reaction are interrogated through Cyclic Voltammetry studies, titration experiments, control reactions with Ni(0) and Ni(II)-complexes, and ligand optimization data. Those studies indicate that the formation of a BINAPNi(0) is minimized and the formation of an active pyridine-stabilized Ni(I) species is sustained during the reaction. Our preliminary mechanistic studies ruled out the involvement of Ni(0) species in this electrochemical cross-coupling, which is mediated by Ni(I) species via a Ni(I)-Ni(II)-Ni(III)-Ni(I) catalytic cycle.

4.
Nature ; 623(7988): 745-751, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788684

RESUMO

Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2-4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.


Assuntos
Produtos Biológicos , Técnicas de Química Sintética , Descarboxilação , Eletroquímica , Eletrodos , Preparações Farmacêuticas , Ácidos Carboxílicos/química , Nanopartículas Metálicas/química , Oxirredução , Prata/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Níquel/química , Ligantes , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química , Eletroquímica/métodos , Técnicas de Química Sintética/métodos
5.
J Am Chem Soc ; 145(41): 22735-22744, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812176

RESUMO

A method for deoxyfluorination of aliphatic primary, secondary, and tertiary alcohols is reported, employing a nontrigonal phosphorus triamide for base-free alcohol activation in conjunction with an organic soluble fluoride donor and a triarylborane fluoride shuttling catalyst. Mechanistic experiments are consistent with a reaction that proceeds by the collapse of an oxyphosphonium fluoroborate ion pair with fluoride transfer. The substrate scope complements existing deoxyfluorination methods and enables the preparation of homochiral secondary and tertiary alkylfluorides by stereoinversion of the substrate alcohol.

6.
Acc Chem Res ; 56(20): 2851-2865, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37772915

RESUMO

ConspectusTransition-metal catalyzed cross-coupling reactions are fundamental reactions in organic chemistry, facilitating strategic bond formations for accessing natural products, organic materials, agrochemicals, and pharmaceuticals. Redox chemistry enables access to elusive cross-coupling mechanisms through single-electron processes as an alternative to classical two-electron strategies predominated by palladium catalysis. The seminal reports of Baran, MacMillan, Doyle, Molander, Weix, Lin, Fu, Reisman, and others in merging redox perturbation (photochemical, electrochemical, and purely chemical) with catalysis are pivotal to the current resurgence and mechanistic understanding of first-row transition metal-based catalysis. The hallmark of this redox platform is the systematic modulation of transition-metal oxidation states by a photoredox catalyst or at a heterogeneous electrode surface. Electrocatalysis and photocatalysis enhance transition metal catalysis' capacity for bond formation through electron- or energy-transfer processes that promote otherwise challenging elementary steps or elusive mechanisms. Cross-coupling conditions promoted by electrocatalysis and photocatalysis are mild, and bond formation proceeds with exceptionally high chemoselectivity and wide functional group tolerance. The interfacing of abundant first-row transition-metal catalysis with electrocatalysis and photocatalysis has brought about a paradigm shift in cross-coupling technology as practitioners are quickly applying these tools in synthesizing fine chemicals and pharmaceutically relevant motifs. In particular, the merger of Ni catalysis with electro- and photochemistry ushered in a new era for carbon-carbon and carbon-heteroatom cross-couplings with expanded generality compared to their thermally driven counterparts. Over the past decade, we have developed enabling photo- and electrochemical methods throughout our combined research experience in industry (BMS, AstraZeneca) and academia (Professor Baran, Scripps Research) in cross-disciplinary collaborative environments. In this Account, we will outline recent progress from our past and present laboratories in photo- and electrochemically mediated Ni-catalyzed cross-couplings. By highlighting these cross-coupling methodologies, we will also compare mechanistic features of both electro- and photochemical strategies for forging C(sp2)-C(sp3), C(sp3)-C(sp3), C-O, C-N, and C-S bonds. Through these side-by-side comparisons, we hope to demystify the subtle differences between the two complementary tools to enact redox control over transition metal catalysis. Finally, building off the collective experience of ourselves and the rest of the community, we propose a tactical user guide to photo- and electrochemically driven cross-coupling reactions to aid the practitioner in rapidly applying such tools in their synthetic designs.

7.
Org Lett ; 25(44): 7947-7952, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37284784

RESUMO

We describe a two-step process for the synthesis of substituted bicyclo[1.1.0]butanes. A photo-Hunsdiecker reaction generates iodo-bicyclo[1.1.1]pentanes under metal-free conditions at room temperature. These intermediates react with nitrogen and sulfur nucleophiles to afford substituted bicyclo[1.1.0]butane products.

8.
J Am Chem Soc ; 144(38): 17709-17720, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106767

RESUMO

A useful protocol for achieving decarboxylative cross-coupling (DCC) of redox-active esters (RAE, isolated or generated in situ) and halo(hetero)arenes is reported. This pragmatically focused study employs a unique Ag-Ni electrocatalytic platform to overcome numerous limitations that have plagued this strategically powerful transformation. In its optimized form, coupling partners can be combined in a surprisingly simple way: open to the air, using technical-grade solvents, an inexpensive ligand and Ni source, and substoichiometric AgNO3, proceeding at room temperature with a simple commercial potentiostat. Most importantly, all of the results are placed into context by benchmarking with state-of-the-art methods. Applications are presented that simplify synthesis and rapidly enable access to challenging chemical space. Finally, adaptation to multiple scale regimes, ranging from parallel milligram-based synthesis to decagram recirculating flow is presented.


Assuntos
Ésteres , Catálise , Ligantes , Oxirredução , Solventes
9.
ACS Med Chem Lett ; 13(9): 1413-1420, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36105339

RESUMO

Carboxylic acids, the most versatile and ubiquitous diversity input used in medicinal chemistry for canonical polar bond constructions such as amide synthesis, can now be employed in a fundamentally different category of reaction to make C-C bonds by harnessing the power of radicals. This outlook serves as a user-guide to aid practitioners in both the design of syntheses that leverage the simplifying power of this disconnection and the precise tactics that can be employed to enable them. Taken together, this emerging area holds the potential to rapidly accelerate access to chemical space of value to modern medicinal chemistry.

10.
Org Lett ; 24(34): 6331-6334, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36001635

RESUMO

A novel, convergent synthesis of aminotriazoloquinazolines is reported. These heterocycles are reliably prepared via a "click-like" reaction between readily available aryl carbodiimides and acyl or aryl hydrazides. Such products are of particular interest with respect to their inhibitory activity against the A2A and A2B adenosine receptors, and the title two-component coupling reaction has greatly accelerated the discovery of potent/selective chemical matter in this space.


Assuntos
Carbodi-Imidas , Hidrazinas
11.
Science ; 375(6582): 745-752, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175791

RESUMO

The synthesis of terpenes is a large field of research that is woven deeply into the history of chemistry. Terpene biosynthesis is a case study of how the logic of a modular design can lead to diverse structures with unparalleled efficiency. This work leverages modern nickel-catalyzed electrochemical sp2-sp3 decarboxylative coupling reactions, enabled by silver nanoparticle-modified electrodes, to intuitively assemble terpene natural products and complex polyenes by using simple modular building blocks. The step change in efficiency of this approach is exemplified through the scalable preparation of 13 complex terpenes, which minimized protecting group manipulations, functional group interconversions, and redox fluctuations. The mechanistic aspects of the essential functionalized electrodes are studied in depth through a variety of spectroscopic and analytical techniques.


Assuntos
Técnicas de Química Sintética , Terpenos/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Catálise , Ciclização , Técnicas Eletroquímicas , Eletrodos , Nanopartículas Metálicas , Níquel/química , Oxirredução , Prata , Estereoisomerismo , Terpenos/química
12.
Acc Chem Res ; 53(1): 72-83, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31823612

RESUMO

The appeal and promise of synthetic organic electrochemistry have been appreciated over the past century. In terms of redox chemistry, which is frequently encountered when forging new bonds, it is difficult to conceive of a more economical way to add or remove electrons than electrochemistry. Indeed, many of the largest industrial synthetic chemical processes are achieved in a practical way using electrons as a reagent. Why then, after so many years of the documented benefits of electrochemistry, is it not more widely embraced by mainstream practitioners? Erroneous perceptions that electrochemistry is a "black box" combined with a lack of intuitive and inexpensive standardized equipment likely contributed to this stagnation in interest within the synthetic organic community. This barrier to entry is magnified by the fact that many redox processes can already be accomplished using simple chemical reagents even if they are less atom-economic. Time has proven that sustainability and economics are not strong enough driving forces for the adoption of electrochemical techniques within the broader community. Indeed, like many synthetic organic chemists that have dabbled in this age-old technique, our first foray into this area was not by choice but rather through sheer necessity. The unique reactivity benefits of this old redox-modulating technique must therefore be highlighted and leveraged in order to draw organic chemists into the field. Enabling new bonds to be forged with higher levels of chemo- and regioselectivity will likely accomplish this goal. In doing so, it is envisioned that widespread adoption of electrochemistry will go beyond supplanting unsustainable reagents in mundane redox reactions to the development of exciting reactivity paradigms that enable heretofore unimagined retrosynthetic pathways. Whereas the rigorous physical organic chemical principles of electroorganic synthesis have been reviewed elsewhere, it is often the case that such summaries leave out the pragmatic aspects of designing, optimizing, and scaling up preparative electrochemical reactions. Taken together, the task of setting up an electrochemical reaction, much less inventing a new one, can be vexing for even seasoned organic chemists. This Account therefore features a unique format that focuses on addressing this exact issue within the context of our own studies. The graphically rich presentation style pinpoints basic concepts, typical challenges, and key insights for those "electro-curious" chemists who seek to rapidly explore the power of electrochemistry in their research.


Assuntos
Técnicas Eletroquímicas , Compostos Orgânicos/química , Estrutura Molecular , Compostos Orgânicos/síntese química , Oxirredução
13.
Synlett ; 29(13): 1749-1752, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30631220

RESUMO

The direct, stereospecific amination of alkylboronic and borinic esters can be conducted by treatment of the organoboron compound with methoxyamine and potassium tert-butoxide. In addition to being stereospecific, this process also enables the direct amination of tertiary boronic esters in an efficient fashion.

14.
Org Lett ; 19(9): 2270-2273, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28425713

RESUMO

Acyl azetidines exhibit nonplanar hybridization, leading to lower amide-like character of the corresponding (O)C-N bonds. This impacts N-acryloyl azetidines by producing enhanced electrophilicy at appended Michael acceptors. Herein, reactivity data are reported in the presence of glutathione (GSH) in phosphate buffer (pH 7.4) at 37 °C. Wide reactivity ranges are observed by varying substitution at the Michael acceptor or by modulating the electron-withdrawing character of substituents at the C3 position of the azetidine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA