Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612033

RESUMO

Polishing after the removal of brackets is the final step in orthodontic treatment. It is simple to perform, though some studies have reported that polishing causes damage to the enamel surface. An in vitro study was made of the influence of the buccal surface convexity of the tooth upon possible enamel loss when the remaining resin and adhesive are removed after bracket decementing using two different polishing modes: a tungsten carbide bur at low and high speeds. The convexity of the buccal surface was quantified in 30 incisors and 30 premolars. A stereoscopic microscope was used to obtain photographs of the profile of the crown, and Image J software was used to calculate convexity by dividing the length of a line from the cementoenamel junction to the incisal margin by another line from the mentioned junction to the maximum convexity of the buccal surface. Brackets were cemented on all the teeth and were decemented 24 h later. In both groups, the residual composite was removed with a tungsten carbide bur at a low speed in one-half of the teeth and at a high speed in the other half. The buccal surface of each tooth was then photographed again, and the convexity was calculated and compared against the baseline value. The difference between the two values were taken to represent the enamel loss. The convexity of the premolars was significantly greater than that of the incisors, but this did not result in greater enamel loss when the same polishing mode was used. However, the tungsten carbide bur at a high speed proved more aggressive, causing significantly greater enamel loss than when used at a low speed.

2.
Dent J (Basel) ; 9(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34562972

RESUMO

Internal bleaching is a conservative, non-invasive, and simple treatment that is frequently performed in daily clinical practice. The present in vitro study analyzes the oxygen expansion of different bleaching agents resulting from the oxidation reaction when interacting with enamel and dentin. Enamel and dentin were crushed separately until obtaining a fine powder with particles of an approximate size between 0.06 and 0.2 mm. Each enamel and dentin sample were mixed with 37% carbamide peroxide (CP 37%), 30% hydrogen peroxide (HP 30%), sodium perborate (SP) combined with HP 30% (HP 30% + SP) and SP with distilled water (SP). A total of 280 1 mm diameter glass tubes were used with 70 for each bleaching agent (30 for powdered enamel evaluation, 30 for powdered dentin evaluation, and 10 controls). The bleaching agents were placed in the prepared tubes immediately after mixing the components. As expansion occurred, the oil inside the tube was displaced, through which the resulting expansion was evaluated and measured for 10 days. A significant expansion was observed that varied in magnitude according to the bleaching agent and the tooth structure used. Student's t test and Welch's ANOVA were used to analyze the data obtained. The highest mean expansion of both enamel and dentin was observed with 30% HP (66.6 mm for enamel, 94.5 mm for dentin) followed by HP 30% + SP (48.6 mm for enamel, 52.7 mm for dentin), CP 37% (38.4 mm for enamel, 52.6 mm for dentin) and finally SP with water (12.7 mm for enamel, 4.4 mm for dentin). It was observed that the expansion in the SP group with enamel was significantly lower than in the rest of the groups, while that registered for HP 30% was significantly higher. (p < 0.001). The results with dentin were similar, with a significantly lower expansion for SP and higher for HP 30% (p < 0.001). The oxygen expansion observed as a result of the interaction between bleaching agents and dental tissues could contribute to improving our understanding of bleaching and its results. These results suggest that bleaching agents react with the organic component of the tooth structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA