Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 26(25): 5557-5582, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31820516

RESUMO

White light emitting (WLE) materials are of increasing interest owing to their promising applications in artificial lighting, display devices, molecular sensors, and switches. In this context, organic WLE materials cater to the interest of the scientific community owing to their promising features like color purity, long-term stability, solution processability, cost-effectiveness, and low toxicity. The typical method for the generation of white light is to combine three primary (red, green, and blue) or the two complementary (e.g., yellow and blue or red and cyan) emissive units covering the whole visible spectral window (400-800 nm). The judicious choice of molecular building blocks and connecting them through either strong covalent bonds or assembling through weak noncovalent interactions are the key to achieve enhanced emission spanning the entire visible region. In the present review article, molecular engineering approaches for the development of all-organic WLE materials are analyzed in view of different photophysical processes like fluorescence resonance energy transfer (FRET), excited-state intramolecular proton transfer (ESIPT), charge transfer (CT), monomer-excimer emission, triplet-state harvesting, etc. The key aspect of tuning the molecular fluorescence under the influence of pH, heat, and host-guest interactions is also discussed. The white light emission obtained from small organic molecules to supramolecular assemblies is presented, including polymers, micelles, and also employing covalent organic frameworks. The state-of-the-art knowledge in the field of organic WLE materials, challenges, and future scope are delineated.

2.
ACS Appl Mater Interfaces ; 10(51): 44696-44705, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30484630

RESUMO

The excited-state intramolecular proton transfer (ESIPT)-based molecular probes have drawn significant attention owing to their environment-sensitive fluorescence properties, large Stokes shift, and emerged as building blocks for the development of molecular sensors and switches. However, most of the ESIPT-based fluorophores exhibit weak emission in the solid state limiting the scope of real-time applications. Addressing such issues, herein, we presented a C3 symmetric-like molecular architecture employing a simple one-step Schiff base condensation between triaminoguanidinium chloride and 3,5-di- tert-butyl-2-hydroxybenzaldehyde (TGHB). The temperature-dependent fluorescence studies including at 77 K indicated the strong emission from the keto tautomer compared to that of the enol tautomer. The facile ESIPT in TGHB in the solid-state led to a remarkable enhancement of fluorescence quantum yield of 1600 times compared to that of the solution (λem = 545 nm) by restricting the intramolecular rotation and subsequently suppressing the nonradiative deactivation. The excited-state processes were further elucidated through time-resolved fluorescence measurements. TGHB exhibited turn on-off fluorescence upon exposure to acid/base vapor in the form of a powder as well as a transparent, free-standing thin film. A rewritable and erasable fluorescent platform was demonstrated using TGHB as molecular ink, which offers a potential testbed for performing "write-erase-write" cycles multiple times. In addition, TGHB, possessing multiple binding sites (O and N donors) involving the central core of the triaminoguanidinium cation displayed selective turn-on fluorescence with Zn2+. The structure-property relationship revealed in the present study provides insight into the development of novel cost-effective multifunctional materials, which are promising for stimuli-responsive molecular switches.

3.
Chemistry ; 24(5): 1151-1158, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29136298

RESUMO

A simple and cost-effective methodology employing environmentally benign substances for the fabrication of white-light emitting materials is important for practical applications in the field of lighting and display devices. Designing purely organic-based white-light-emitting systems with high quantum efficiency in aqueous media is an unmet challenge. With this objective, a new class of pyridoindole-based hydrophobic fluorophore 6,7,8,9-tetrapropylpyrido[1,2-a]indole-10-carbaldehye (TPIC) was introduced. A strategy of self-assembly using nonionic surfactants was employed to enhance the fluorescence of TPIC in an aqueous medium and was exploited as energy donor. The steady-state and time-resolved emission spectra analysis revealed the micelle-mediated energy transfer from TPIC to Nile red (energy acceptor) leading to tunable fluorescence along with white-light emission. The white-light emitting aqueous solution was obtained with the Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of (0.33, 0.36) and significantly high quantum yield of 37 %. Solid-state white-light emission was achieved retaining the assembly of fluorophores in the form of a gel having the high quantum efficiency of 33 % with CIE coordinates of (0.32, 0.36); close to that of pure white light. The bright white luminescence of the inscription prepared using white-light emitting gel on a solid substrate offers promising applications for full-color flat panel displays.

4.
Chem Commun (Camb) ; 53(7): 1257-1260, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28067342

RESUMO

A tetraphenylcyclopentadiene based multifunctional, solution processable, fluorescent, ultramicroporous polymer exhibiting high hydrogen uptake was employed for encapsulation of dyes to obtain enhanced white light emission in solution, nanoparticles, gel and transparent thin film. Hybrid nanoparticles showed a quantum yield of 35% with a high color rendering index.

5.
Macromol Rapid Commun ; 37(3): 271-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26663576

RESUMO

Conjugated polymer nanoparticles based on poly[9,9-bis(2-ethylhexyl)fluorene] and poly[N-(2,4,6-trimethylphenyl)-N,N-diphenylamine)-4,4'-diyl] are fabricated using anionic surfactant sodium dodecylsulphate in water by miniemulsion technique. Average diameters of polyfluorene and polytriarylamine nanoparticles range from 70 to 100 and 100 to 140 nm, respectively. The surface of the nanoparticles is decorated with triplet emitting dye, tris(2,2'-bipyridyl)ruthenium(II) chloride. Intriguing photophysics of aqueous dispersions of these hybrid nanoparticles is investigated. Nearly 50% quenching of fluorescence is observed in the case of dye-coated polyfluorene nanoparticles; excitation energy transfer is found to be the dominant quenching mechanism. On the other hand, nearly complete quenching of emission is noticed in polytriarylamine nanoparticle-dye hybrids. It is proposed that the excited state electron transfer from the electron-rich polytriarylamine donor polymer to Ru complex leads to the complete quenching of emission of polytriarylamine nanoparticles. The current study offers promising avenues for developing aqueous solution processed-electroluminescent devices involving a conjugated polymer nanoparticle host and Ru or Ir-based triplet emitting dye as the guest.


Assuntos
Nanopartículas/química , Polímeros/química , Água/química , Aminas/química , Fluorenos/química , Nanopartículas/ultraestrutura , Rutênio/química , Espectrometria de Fluorescência
6.
Chemistry ; 20(44): 14344-50, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25213659

RESUMO

We describe a straightforward strategy for the synthesis of strongly fluorescent pyridoindoles by Pd-catalyzed oxidative annulations of internal alkynes with C-3 functionalized indoles through CH/NH bond activation in a one-pot tandem process. Mechanistic investigations reveal the preferential activation of NH indole followed by CH activation during the cyclization process. Photophysical properties of pyridoindoles exhibited the highest fluorescence quantum yield of nearly 80 %, with emission color varying from blue to green to orange depending on the substructures. Quantum mechanical calculations provide insights into the observed photophysical properties. The strong fluorescence of the pyrido[1,2-a]indole derivative has been employed in subcellular imaging, which demonstrates its localization in the cell nucleus.


Assuntos
Indóis/química , Indóis/síntese química , Piridinas/química , Piridinas/síntese química , Catálise , Ciclização , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Estrutura Molecular , Oxirredução , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA