RESUMO
BACKGROUND: Cocaine consumption is associated with reduced attentional event-related potentials (ERPs), namely P3a and P3b, indicating bottom-up and top-down deficits respectively. At cognitive level, these impairments are larger for faster routes of administration (e.g., smoked cocaine [SC]) than slower routes (e.g., insufflated cocaine [IC]). Here we assess these ERPs considering the route of cocaine administration. We hypothesized that SC dependent (SCD) would exhibit reduced amplitude of the P3a, while both SCD and IC dependent (ICD) would show reduced amplitude of the P3b. METHODS: We examined 25 SCD, 22 ICD matched by poly-consumption profiles, and 25 controls matched by demographic variables. We combined EEG data from the Global-Local task with behavioral data from attentional cognitive tasks. RESULTS: At the behavioral level, SCD exhibited attentional deficits in both bottom-up and top-down processes, while ICD only showed a tendency for top-down deficits. The amplitude of P3a and P3b was lower in Users groups. We observed subtle route-based differences, with larger differences in the P3a for SCD and in the P3b for ICD. Neurophysiological and behavioral data converged, with the P3a associated to bottom-up performance and P3b to top-down. CONCLUSIONS: Different routes of administration lead to distinct attentional neurocognitive profiles. Specifically, SCD showed greater attentional impairment, mainly at bottom-up/P3a, while ICD showed a trend of top-down/P3b deficits. These findings emphasize the crucial role of considering the route of administration in both clinical and research settings and support the use of attentional ERPs as valid measures for assessing attentional deficits in substance Dependence.
Assuntos
Atenção , Transtornos Relacionados ao Uso de Cocaína , Eletroencefalografia , Potenciais Evocados , Testes Neuropsicológicos , Humanos , Masculino , Adulto , Feminino , Atenção/efeitos dos fármacos , Atenção/fisiologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Potenciais Evocados/fisiologia , Potenciais Evocados/efeitos dos fármacos , Cocaína/administração & dosagem , Potenciais Evocados P300/fisiologia , Potenciais Evocados P300/efeitos dos fármacos , Adulto Jovem , Pessoa de Meia-IdadeRESUMO
Brain states are frequently represented using a unidimensional scale measuring the richness of subjective experience (level of consciousness). This description assumes a mapping between the high-dimensional space of whole-brain configurations and the trajectories of brain states associated with changes in consciousness, yet this mapping and its properties remain unclear. We combine whole-brain modeling, data augmentation, and deep learning for dimensionality reduction to determine a mapping representing states of consciousness in a low-dimensional space, where distances parallel similarities between states. An orderly trajectory from wakefulness to patients with brain injury is revealed in a latent space whose coordinates represent metrics related to functional modularity and structure-function coupling, increasing alongside loss of consciousness. Finally, we investigate the effects of model perturbations, providing geometrical interpretation for the stability and reversibility of states. We conclude that conscious awareness depends on functional patterns encoded as a low-dimensional trajectory within the vast space of brain configurations.
Assuntos
Lesões Encefálicas , Estado de Consciência , Humanos , Encéfalo , Vigília , Vias Neurais , Imageamento por Ressonância Magnética , Mapeamento EncefálicoRESUMO
Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.
Assuntos
Alucinógenos , N,N-Dimetiltriptamina , Humanos , N,N-Dimetiltriptamina/farmacologia , Alucinógenos/farmacologia , Imageamento por Ressonância Magnética , Encéfalo , EletroencefalografiaRESUMO
Dissipative systems evolve in the preferred temporal direction indicated by the thermodynamic arrow of time. The fundamental nature of this temporal asymmetry led us to hypothesize its presence in the neural activity evoked by conscious perception of the physical world, and thus its covariance with the level of conscious awareness. We implemented a data-driven deep learning framework to decode the temporal inversion of electrocorticography signals acquired from non-human primates. Brain activity time series recorded during conscious wakefulness could be distinguished from their inverted counterparts with high accuracy, both using frequency and phase information. However, classification accuracy was reduced for data acquired during deep sleep and under ketamine-induced anesthesia; moreover, the predictions obtained from multiple independent neural networks were less consistent for sleep and anesthesia than for conscious wakefulness. Finally, the analysis of feature importance scores highlighted transitions between slow ($\approx$20 Hz) and fast frequencies (>40 Hz) as the main contributors to the temporal asymmetry observed during conscious wakefulness. Our results show that a preferred temporal direction is manifest in the neural activity evoked by conscious mentation and in the phenomenology of the passage of time, establishing common ground to tackle the relationship between brain and subjective experience.
Assuntos
Estado de Consciência , Ketamina , Animais , Estado de Consciência/fisiologia , Vigília/fisiologia , Eletrocorticografia , Sono/fisiologia , Ketamina/farmacologia , Encéfalo/fisiologiaRESUMO
The use of low sub-perceptual doses of psychedelics ("microdosing") has gained popularity in recent years. Although anecdotal reports claim multiple benefits associated with this practice, the lack of placebo-controlled studies severely limits our knowledge of microdosing and its effects. Moreover, research conducted in standard laboratory settings could fail to capture the motivation of individuals engaged or planning to engage in microdosing protocols, thus underestimating the likelihood of positive effects on creativity and cognitive function. We recruited 34 individuals starting to microdose with psilocybin mushrooms (Psilocybe cubensis), one of the materials most frequently used for this purpose. Following a double-blind placebo-controlled experimental design, we investigated the acute and short-term effects of 0.5 g of dried mushrooms on subjective experience, behavior, creativity (divergent and convergent thinking), perception, cognition, and brain activity. The reported acute effects were significantly more intense for the active dose compared to the placebo, but only for participants who correctly identified their experimental condition. These changes were accompanied by reduced EEG power in the theta band, together with preserved levels of Lempel-Ziv broadband signal complexity. For all other measurements there was no effect of microdosing except for few small changes towards cognitive impairment. According to our findings, low doses of psilocybin mushrooms can result in noticeable subjective effects and altered EEG rhythms, but without evidence to support enhanced well-being, creativity and cognitive function. We conclude that expectation underlies at least some of the anecdotal benefits attributed to microdosing with psilocybin mushrooms.
Assuntos
Agaricales , Alucinógenos , Método Duplo-Cego , Alucinógenos/farmacologia , Humanos , Motivação , Psilocibina/farmacologiaRESUMO
RATIONALE: Serotonergic psychedelics are being studied as novel treatments for mental health disorders and as facilitators of improved well-being, mental function, and creativity. Recent studies have found mixed results concerning the effects of low doses of psychedelics ("microdosing") on these domains. However, microdosing is generally investigated using instruments designed to assess larger doses of psychedelics, which might lack sensitivity and specificity for this purpose. OBJECTIVES: Determine whether unconstrained speech contains signatures capable of identifying the acute effects of psilocybin microdoses. METHODS: Natural speech under psilocybin microdoses (0.5 g of psilocybin mushrooms) was acquired from thirty-four healthy adult volunteers (11 females: 32.09 ± 3.53 years; 23 males: 30.87 ± 4.64 years) following a double-blind and placebo-controlled experimental design with two measurement weeks per participant. On Wednesdays and Fridays of each week, participants consumed either the active dose (psilocybin) or the placebo (edible mushrooms). Features of interest were defined based on variables known to be affected by higher doses: verbosity, semantic variability, and sentiment scores. Machine learning models were used to discriminate between conditions. Classifiers were trained and tested using stratified cross-validation to compute the AUC and p-values. RESULTS: Except for semantic variability, these metrics presented significant differences between a typical active microdose and the inactive placebo condition. Machine learning classifiers were capable of distinguishing between conditions with high accuracy (AUC [Formula: see text] 0.8). CONCLUSIONS: These results constitute first evidence that low doses of serotonergic psychedelics can be identified from unconstrained natural speech, with potential for widely applicable, affordable, and ecologically valid monitoring of microdosing schedules.
Assuntos
Alucinógenos , Transtornos Mentais , Adulto , Criatividade , Método Duplo-Cego , Feminino , Alucinógenos/farmacologia , Humanos , Idioma , Masculino , Psilocibina/farmacologiaRESUMO
Significant advances have been made by identifying the levels of synchrony of the underlying dynamics of a given brain state. This research has demonstrated that non-conscious dynamics tend to be more synchronous than in conscious states, which are more asynchronous. Here we go beyond this dichotomy to demonstrate that different brain states are underpinned by dissociable spatiotemporal dynamics. We investigated human neuroimaging data from different brain states (resting state, meditation, deep sleep and disorders of consciousness after coma). The model-free approach was based on Kuramoto's turbulence framework using coupled oscillators. This was extended by a measure of the information cascade across spatial scales. Complementarily, the model-based approach used exhaustive in silico perturbations of whole-brain models fitted to these measures. This allowed studying of the information encoding capabilities in given brain states. Overall, this framework demonstrates that elements from turbulence theory provide excellent tools for describing and differentiating between brain states.
Assuntos
Encéfalo , Estado de Consciência , Encéfalo/diagnóstico por imagem , HumanosRESUMO
N,N-Dimethyltryptamine (DMT) is a classic psychedelic capable of inducing short-lasting but profound changes in consciousness. As with other psychedelics, the experience induced by DMT strongly depends upon contextual factors, yet the neurobiological determinants of this variability remain unknown. The present study investigated changes in neural oscillations elicited by inhaled DMT, and whether baseline electroencephalography (EEG) recordings could predict the subjective effects reported by the participants. Healthy volunteers (N = 35) were measured with EEG before and during the acute effects of DMT consumed in a natural setting. Source-localized neural oscillations were correlated with the results of multiple questionnaires employed to assess the subjective effects of the drug. DMT resulted in a marked reduction of alpha and beta oscillations, and increased posterior spectral power in the delta, theta and gamma bands. The power of fronto-temporal theta oscillations was inversely correlated with scales indexing feelings of unity and transcendence, which are an integral part of the phenomenology of mystical-type experiences. The robustness of these results was supported using a machine learning model for regression trained and tested following a cross-validation procedure. These results are consistent with the observation that the state of mind prior to consuming a psychedelic drug influences the ensuing subjective experience of the user. They also suggest that baseline EEG screenings before administration of a serotonergic psychedelic could be useful to estimate the likelihood of inducing mystical-type experiences, previously linked to sustained positive effects in well-being and improved outcome of therapeutic interventions.
RESUMO
The cognitive functions of human and nonhuman primates rely on the dynamic interplay of distributed neural assemblies. As such, it seems unlikely that cognition can be supported by macroscopic brain dynamics at the proximity of equilibrium. We confirmed this hypothesis by investigating electrocorticography data from nonhuman primates undergoing different states of unconsciousness (sleep, and anesthesia with propofol, ketamine, and ketamine plus medetomidine), and functional magnetic resonance imaging data from humans, both during deep sleep and under propofol anesthesia. Systematically, all states of reduced consciousness unfolded at higher proximity to equilibrium compared to conscious wakefulness, as demonstrated by the computation of entropy production and the curl of probability flux in phase space. Our results establish nonequilibrium macroscopic brain dynamics as a robust signature of consciousness, opening the way for the characterization of cognition and awareness using tools from statistical mechanics.
Assuntos
Estado de Consciência , Propofol , Animais , Encéfalo , Inconsciência , VigíliaRESUMO
Consciousness transiently fades away during deep sleep, more stably under anesthesia, and sometimes permanently due to brain injury. The development of an index to quantify the level of consciousness across these different states is regarded as a key problem both in basic and clinical neuroscience. We argue that this problem is ill-defined since such an index would not exhaust all the relevant information about a given state of consciousness. While the level of consciousness can be taken to describe the actual brain state, a complete characterization should also include its potential behavior against external perturbations. We developed and analyzed whole-brain computational models to show that the stability of conscious states provides information complementary to their similarity to conscious wakefulness. Our work leads to a novel methodological framework to sort out different brain states by their stability and reversibility, and illustrates its usefulness to dissociate between physiological (sleep), pathological (brain-injured patients), and pharmacologically-induced (anesthesia) loss of consciousness.
Assuntos
Encéfalo/fisiologia , Estado de Consciência , Encéfalo/diagnóstico por imagem , Biologia Computacional , Estado de Consciência/classificação , Estado de Consciência/fisiologia , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Sono/fisiologia , Vigília/classificação , Vigília/fisiologiaRESUMO
BACKGROUND: N,N-dimethyltryptamine is a short-acting psychedelic tryptamine found naturally in many plants and animals. Few studies to date have addressed the neural and psychological effects of N,N-dimethyltryptamine alone, either administered intravenously or inhaled in freebase form, and none have been conducted in natural settings. AIMS: Our primary aim was to study the acute effects of inhaled N,N-dimethyltryptamine in natural settings, focusing on questions tuned to the advantages of conducting field research, including the effects of contextual factors (i.e. "set" and "setting"), the possibility of studying a comparatively large number of subjects, and the relaxed mental state of participants consuming N,N-dimethyltryptamine in familiar and comfortable settings. METHODS: We combined state-of-the-art wireless electroencephalography with psychometric questionnaires to study the neural and subjective effects of naturalistic N,N-dimethyltryptamine use in 35 healthy and experienced participants. RESULTS: We observed that N,N-dimethyltryptamine significantly decreased the power of alpha (8-12 Hz) oscillations throughout all scalp locations, while simultaneously increasing power of delta (1-4 Hz) and gamma (30-40 Hz) oscillations. Gamma power increases correlated with subjective reports indicative of some features of mystical-type experiences. N,N-dimethyltryptamine also increased global synchrony and metastability in the gamma band while decreasing those measures in the alpha band. CONCLUSIONS: Our results are consistent with previous studies of psychedelic action in the human brain, while at the same time the results suggest potential electroencephalography markers of mystical-type experiences in natural settings, thus highlighting the importance of investigating these compounds in the contexts where they are naturally consumed.
Assuntos
Transtornos da Consciência , Eletroencefalografia/métodos , Misticismo/psicologia , N,N-Dimetiltriptamina , Inventário de Personalidade , Terapia de Relaxamento/métodos , Administração por Inalação , Adulto , Disponibilidade Biológica , Transtornos da Consciência/induzido quimicamente , Transtornos da Consciência/diagnóstico , Monitoramento de Medicamentos/métodos , Feminino , Alucinógenos/administração & dosagem , Alucinógenos/farmacocinética , Humanos , Masculino , N,N-Dimetiltriptamina/administração & dosagem , N,N-Dimetiltriptamina/farmacocinética , Avaliação de Resultados em Cuidados de Saúde , Psicometria/métodos , Autoimagem , Autorrelato , Tecnologia sem FioRESUMO
Serotonergic psychedelics have been suggested to mirror certain aspects of psychosis, and, more generally, elicit a state of consciousness underpinned by increased entropy of on-going neural activity. We investigated the hypothesis that language produced under the effects of lysergic acid diethylamide (LSD) should exhibit increased entropy and reduced semantic coherence. Computational analysis of interviews conducted at two different time points after 75 µg of intravenous LSD verified this prediction. Non-semantic analysis of speech organization revealed increased verbosity and a reduced lexicon, changes that are more similar to those observed during manic psychoses than in schizophrenia, which was confirmed by direct comparison with reference samples. Importantly, features related to language organization allowed machine learning classifiers to identify speech under LSD with accuracy comparable to that obtained by examining semantic content. These results constitute a quantitative and objective characterization of disorganized natural speech as a landmark feature of the psychedelic state.
Assuntos
Alucinógenos , Dietilamida do Ácido Lisérgico , Entropia , Alucinógenos/farmacologia , Humanos , Idioma , Dietilamida do Ácido Lisérgico/farmacologia , LínguaRESUMO
We address the hypothesis that the entropy of neural dynamics indexes the intensity and quality of conscious content. Previous work established that serotonergic psychedelics can have a dysregulating effect on brain activity, leading to subjective effects that present a considerable overlap with the phenomenology of certain meditative states. Here we propose that the prolonged practice of meditation results in endogenous increased entropy of brain oscillatory activity. We estimated the entropy of band-specific oscillations during the meditative state of traditions classified as 'focused attention' (Himalayan Yoga), 'open monitoring' (Vipassana), and 'open awareness' (Isha Shoonya Yoga). Among all traditions, Vipassana resulted in the highest entropy increases, predominantly in the alpha and low/high gamma bands. In agreement with previous studies, all meditation traditions increased the global coherence in the gamma band, but also stabilized gamma-range dynamics by lowering the metastability. Finally, machine learning classifiers could successfully generalize between certain pairs of meditation traditions based on the scalp distribution of gamma band entropies. Our results extend previous findings on the spectral changes observed during meditation, showing how long-term practice can lead to the capacity for achieving brain states of high entropy. This constitutes an example of an endogenous, self-induced high entropy state.
Assuntos
Meditação , Yoga , Atenção , Encéfalo , Eletroencefalografia , Entropia , HumanosRESUMO
BACKGROUND: Widespread commercialization of cannabis has led to the introduction of brand names based on users' subjective experience of psychological effects and flavors, but this process has occurred in the absence of agreed standards. The objective of this work was to leverage information extracted from large databases to evaluate the consistency and validity of these subjective reports, and to determine their correlation with the reported cultivars and with estimates of their chemical composition (delta-9-THC, CBD, terpenes). METHODS: We analyzed a large publicly available dataset extracted from Leafly.com where users freely reported their experiences with cannabis cultivars, including different subjective effects and flavour associations. This analysis was complemented with information on the chemical composition of a subset of the cultivars extracted from Psilabs.org . The structure of this dataset was investigated using network analysis applied to the pairwise similarities between reported subjective effects and/or chemical compositions. Random forest classifiers were used to evaluate whether reports of flavours and subjective effects could identify the labelled species cultivar. We applied Natural Language Processing (NLP) tools to free narratives written by the users to validate the subjective effect and flavour tags. Finally, we explored the relationship between terpenoid content, cannabinoid composition and subjective reports in a subset of the cultivars. RESULTS: Machine learning classifiers distinguished between species tags given by "Cannabis sativa" and "Cannabis indica" based on the reported flavours:
RESUMO
Classic serotonergic psychedelics are remarkable for their capacity to induce reversible alterations in consciousness of the self and the surroundings, mediated by agonism at serotonin 5-HT2A receptors. The subjective effects elicited by dissociative drugs acting as N-methyl-D-aspartate (NMDA) antagonists (e.g. ketamine and phencyclidine) overlap in certain domains with those of serotonergic psychedelics, suggesting some potential similarities in the brain activity patterns induced by both classes of drugs, despite different pharmacological mechanisms of action. We investigated source-localized magnetoencephalography recordings to determine the frequency-specific changes in oscillatory activity and long-range functional coupling that are common to two serotonergic compounds (lysergic acid diethylamide [LSD] and psilocybin) and the NMDA-antagonist ketamine. Administration of the three drugs resulted in widespread and broadband spectral power reductions. We established their similarity by using different pairs of compounds to train and subsequently evaluate multivariate machine learning classifiers. After applying the same methodology to functional connectivity values, we observed a pattern of occipital, parietal and frontal decreases in the low alpha and theta bands that were specific to LSD and psilocybin, as well as decreases in the low beta band common to the three drugs. Our results represent a first effort in the direction of quantifying the similarity of large-scale brain activity patterns induced by drugs of different mechanism of action, confirming the link between changes in theta and alpha oscillations and 5-HT2A agonism, while also revealing the decoupling of activity in the beta band as an effect shared between NMDA antagonists and 5-HT2A agonists. We discuss how these frequency-specific convergences and divergences in the power and functional connectivity of brain oscillations might relate to the overlapping subjective effects of serotonergic psychedelics and glutamatergic dissociative compounds.
Assuntos
Ondas Encefálicas/efeitos dos fármacos , Conectoma , Antagonistas de Aminoácidos Excitatórios/farmacologia , Alucinógenos/farmacologia , Ketamina/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Aprendizado de Máquina , Rede Nervosa/efeitos dos fármacos , Psilocibina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Adulto , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Alucinógenos/administração & dosagem , Humanos , Ketamina/administração & dosagem , Dietilamida do Ácido Lisérgico/administração & dosagem , Magnetoencefalografia , Psilocibina/administração & dosagem , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagemRESUMO
The real or perceived proximity to death often results in a non-ordinary state of consciousness characterized by phenomenological features such as the perception of leaving the body boundaries, feelings of peace, bliss and timelessness, life review, the sensation of traveling through a tunnel and an irreversible threshold. Near-death experiences (NDEs) are comparable among individuals of different cultures, suggesting an underlying neurobiological mechanism. Anecdotal accounts of the similarity between NDEs and certain drug-induced altered states of consciousness prompted us to perform a large-scale comparative analysis of these experiences. After assessing the semantic similarity between ≈15,000 reports linked to the use of 165 psychoactive substances and 625 NDE narratives, we determined that the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine consistently resulted in reports most similar to those associated with NDEs. Ketamine was followed by Salvia divinorum (a plant containing a potent and selective κ receptor agonist) and a series of serotonergic psychedelics, including the endogenous serotonin 2A receptor agonist N,N-Dimethyltryptamine (DMT). This similarity was driven by semantic concepts related to consciousness of the self and the environment, but also by those associated with the therapeutic, ceremonial and religious aspects of drug use. Our analysis sheds light on the long-standing link between certain drugs and the experience of "dying", suggests that ketamine could be used as a safe and reversible experimental model for NDE phenomenology, and supports the speculation that endogenous NMDA antagonists with neuroprotective properties may be released in the proximity of death.
Assuntos
Estado de Consciência/fisiologia , Mineração de Dados , Conjuntos de Dados como Assunto , Morte , Antagonistas de Aminoácidos Excitatórios/farmacologia , Alucinógenos/farmacologia , Ketamina/farmacologia , Adulto , HumanosRESUMO
Classic psychedelics are substances of paramount cultural and neuroscientific importance. A distinctive feature of psychedelic drugs is the wide range of potential subjective effects they can elicit, known to be deeply influenced by the internal state of the user ("set") and the surroundings ("setting"). The observation of cross-tolerance and a series of empirical studies in humans and animal models support agonism at the serotonin (5-HT)2A receptor as a common mechanism for the action of psychedelics. The diversity of subjective effects elicited by different compounds has been attributed to the variables of "set" and "setting," to the binding affinities for other 5-HT receptor subtypes, and to the heterogeneity of transduction pathways initiated by conformational receptor states as they interact with different ligands ("functional selectivity"). Here we investigate the complementary (i.e., not mutually exclusive) possibility that such variety is also related to the binding affinity for a range of neurotransmitters and monoamine transporters including (but not limited to) 5-HT receptors. Building on two independent binding affinity datasets (compared to "in silico" estimates) in combination with natural language processing tools applied to a large repository of reports of psychedelic experiences (Erowid's Experience Vaults), we obtained preliminary evidence supporting that the similarity between the binding affinity profiles of psychoactive substituted phenethylamines and tryptamines is correlated with the semantic similarity of the associated reports. We also showed that the highest correlation was achieved by considering the combined binding affinity for the 5-HT, dopamine (DA), glutamate, muscarinic and opioid receptors and for the Ca+ channel. Applying dimensionality reduction techniques to the reports, we linked the compounds, receptors, transporters and the Ca+ channel to distinct fingerprints of the reported subjective effects. To the extent that the existing binding affinity data is based on a low number of displacement curves that requires further replication, our analysis produced preliminary evidence consistent with the involvement of different binding sites in the reported subjective effects elicited by psychedelics. Beyond the study of this particular class of drugs, we provide a methodological framework to explore the relationship between the binding affinity profiles and the reported subjective effects of other psychoactive compounds.
RESUMO
Microtubules are filamentous biopolymers involved in essential biological processes. They form key structures in eukaryotic cells, and thus it is very important to determine the mechanisms involved in the formation and maintenance of the microtubule network. Microtubule bucklings are transient and localized events commonly observed in living cells and characterized by a fast bending and its posterior relaxation. Active forces provided by molecular motors have been indicated as responsible for most of these rapid deformations. However, the factors that control the shape amplitude and the time scales of the rising and release stages remain unexplored. In this work, we study microtubule buckling in living cells using Xenopus laevis melanophores as a model system. We tracked single fluorescent microtubules from high temporal resolution (0.3-2 s) confocal movies. We recovered the center coordinates of the filaments with 10-nm precision and analyzed the amplitude of the deformation as a function of time. Using numerical simulations, we explored different force mechanisms resulting in microtubule bending. The simulated events reproduce many features observed for microtubules, suggesting that a mechanistic model captures the essential processes underlying microtubule buckling. Also, we studied the interplay between actively transported vesicles and the microtubule network using a two-color technique. Our results suggest that microtubules may affect transport indirectly besides serving as tracks of motor-driven organelles. For example, they could obstruct organelles at microtubule intersections or push them during filament mechanical relaxation.
Assuntos
Fenômenos Mecânicos , Microtúbulos/metabolismo , Animais , Fenômenos Biomecânicos , Linhagem Celular , Sobrevivência Celular , Modelos Biológicos , Movimento , Xenopus laevisRESUMO
Prostate cancer (PCa) cells display abnormal expression of cytoskeletal proteins resulting in an augmented capacity to resist chemotherapy and colonize distant organs. We have previously shown that heme oxygenase 1 (HO-1) is implicated in cell morphology regulation in PCa. Here, through a multi 'omics' approach we define the HO-1 interactome in PCa, identifying HO-1 molecular partners associated with the integrity of the cellular cytoskeleton. The bioinformatics screening for these cytoskeletal-related partners reveal that they are highly misregulated in prostate adenocarcinoma compared with normal prostate tissue. Under HO-1 induction, PCa cells present reduced frequency in migration events, trajectory and cell velocity and, a significant higher proportion of filopodia-like protrusions favoring zippering among neighboring cells. Moreover forced expression of HO-1 was also capable of altering cell protrusions in transwell co-culture systems of PCa cells with MC3T3 cells (pre-osteoblastic cell line). Accordingly, these effects were reversed under siHO. Transcriptomics profiling evidenced significant modulation of key markers related to cell adhesion and cell-cell communication under HO-1 induction. The integration from our omics-based research provides a four molecular pathway foundation (ANXA2/HMGA1/POU3F1; NFRSF13/GSN; TMOD3/RAI14/VWF; and PLAT/PLAU) behind HO-1 regulation of tumor cytoskeletal cell compartments. The complementary proteomics and transcriptomics approaches presented here promise to move us closer to unravel the molecular framework underpinning HO-1 involvement in the modulation of cytoskeleton pathways, pushing toward a less aggressive phenotype in PCa.
Assuntos
Comunicação Celular/genética , Redes Reguladoras de Genes , Heme Oxigenase-1/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Pseudópodes/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Técnicas de Cocultura , Cristalografia por Raios X , Meios de Cultivo Condicionados/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/genética , Ligação Proteica/efeitos dos fármacos , Proteômica , Pseudópodes/efeitos dos fármacos , Análise de Sequência de RNA , Espectrometria de Massas em Tandem , Transcriptoma/efeitos dos fármacos , Transcriptoma/genéticaRESUMO
The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with â¼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of â¼20 µm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells.