Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607047

RESUMO

Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of ß-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.


Assuntos
Coesinas , Compostos Heterocíclicos com 3 Anéis , Maleimidas , Neoplasias , Humanos , Mutações Sintéticas Letais/genética , Via de Sinalização Wnt/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética
2.
J Exp Clin Cancer Res ; 43(1): 49, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365745

RESUMO

BACKGROUND: SMC1A is a subunit of the cohesin complex that participates in many DNA- and chromosome-related biological processes. Previous studies have established that SMC1A is involved in cancer development and in particular, is overexpressed in chromosomally unstable human colorectal cancer (CRC). This study aimed to investigate whether SMC1A could serve as a therapeutic target for CRC. METHODS: At first, we studied the effects of either SMC1A overexpression or knockdown in vitro. Next, the outcome of SMC1A knocking down (alone or in combination with bevacizumab, a monoclonal antibody against vascular endothelial growth factor) was analyzed in vivo. RESULTS: We found that SMC1A knockdown affects cell proliferation and reduces the ability to grow in anchorage-independent manner. Next, we demonstrated that the silencing of SMC1A and the combo treatment were effective in increasing overall survival in a xenograft mouse model. Functional analyses indicated that both treatments lead to atypical mitotic figures and gene expression dysregulation. Differentially expressed genes were implicated in several pathways including gene transcription regulation, cellular proliferation, and other transformation-associated processes. CONCLUSIONS: These results indicate that SMC1A silencing, in combination with bevacizumab, can represent a promising therapeutic strategy for human CRC.


Assuntos
Coesinas , Neoplasias Colorretais , Animais , Humanos , Camundongos , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas Cromossômicas não Histona/genética , Coesinas/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Inativação Gênica , Fator A de Crescimento do Endotélio Vascular/genética
3.
Biology (Basel) ; 12(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372174

RESUMO

In vitro systems have been mainly promoted by authorities to sustain research by following the 3Rs principle, but continuously increasing amounts of evidence point out that in vivo experimentation is also of extreme relevance. Xenopus laevis, an anuran amphibian, is a significant model organism in the study of evolutionary developmental biology, toxicology, ethology, neurobiology, endocrinology, immunology and tumor biology; thanks to the recent development of genome editing, it has also acquired a relevant position in the field of genetics. For these reasons, X. laevis appears to be a powerful and alternative model to the zebrafish for environmental and biomedical studies. Its life cycle, as well as the possibility to obtain gametes from adults during the whole year and embryos by in vitro fertilization, allows experimental studies of several biological endpoints, such as gametogenesis, embryogenesis, larval growth, metamorphosis and, of course, the young and adult stages. Moreover, with respect to alternative invertebrate and even vertebrate animal models, the X. laevis genome displays a higher degree of similarity with that of mammals. Here, we have reviewed the main available literature on the use of X. laevis in the biosciences and, inspired by Feymann's revised view, "Plenty of room for biology at the bottom", suggest that X. laevis is a very useful model for all possible studies.

4.
Life (Basel) ; 13(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36983793

RESUMO

Transposable elements (TEs) constitute a considerable fraction of eukaryote genomes representing a major source of genetic variability. We describe two DNA sequences isolated in the lizard Zootoca vivipara, here named Zv516 and Zv817. Both sequences are single-copy nuclear sequences, including a truncation of two transposable elements (TEs), SINE Squam1 in Zv516 and a Tc1/Mariner-like DNA transposon in Zv817. FISH analyses with Zv516 showed the occurrence of interspersed signals of the SINE Squam1 sequence on all chromosomes of Z. vivipara and quantitative dot blot indicated that this TE is present with about 4700 copies in the Z. vivipara genome. FISH and dot blot with Zv817 did not produce clear hybridization signals. Bioinformatic analysis showed the presence of active SINE Squam 1 copies in the genome of different lacertids, in different mRNAs, and intronic and coding regions of various genes. The Tc1/Mariner-like DNA transposon occurs in all reptiles, excluding Sphenodon and Archosauria. Zv817 includes a trait of 284 bp, representing an amniote ultra-conserved element (UCE). Using amniote UCE homologous sequences from available whole genome sequences of major amniote taxonomic groups, we performed a phylogenetic analysis which retrieved Prototheria as the sister group of Metatheria and Eutheria. Within diapsids, Testudines are the sister group to Aves + Crocodylia (Archosauria), and Sphenodon is the sister group to Squamata. Furthermore, large trait regions flanking the UCE are conserved at family level.

5.
Animals (Basel) ; 12(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428413

RESUMO

During development, sexual differentiation results in physiological, anatomical and metabolic differences that implicate not only the gonads but also other body structures. Sex in Leopard geckos is determined by egg incubation temperature. Based on the premise that the developmental decision of gender does not depend on a single gene, we performed an analysis on E. macularius to gain insights into the genes that may be involved in gonads' sexual differentiation during the thermosensitive period. All the genes were identified as differentially expressed at stage 30 during the labile phase of sex differentiation. In this way, the expression of genes known to be involved in gonadal sexual differentiation, such as WNT4, SOX9, DMRT1, Erα, Erß, GnRH, P450 aromatase, PRLand PRL-R, was investigated. Other genes putatively involved in sex differentiation were sought by differential display. Our findings indicate that embryo exposure to a sex-determining temperature induces differential expression of several genes that are involved not only in gonadal differentiation, but also in several biological pathways (ALDOC, FREM1, BBIP1, CA5A, NADH5, L1 non-LTR retrotransposons, PKM). Our data perfectly fit within the new studies conducted in developmental biology, which indicate that in the developing embryo, in addition to gonadal differentiation, sex-specific tissue and metabolic polarization take place in all organisms.

6.
Elife ; 92020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33284104

RESUMO

Mutations in genes encoding subunits of the cohesin complex are common in several cancers, but may also expose druggable vulnerabilities. We generated isogenic MCF10A cell lines with deletion mutations of genes encoding cohesin subunits SMC3, RAD21, and STAG2 and screened for synthetic lethality with 3009 FDA-approved compounds. The screen identified several compounds that interfere with transcription, DNA damage repair and the cell cycle. Unexpectedly, one of the top 'hits' was a GSK3 inhibitor, an agonist of Wnt signaling. We show that sensitivity to GSK3 inhibition is likely due to stabilization of ß-catenin in cohesin-mutant cells, and that Wnt-responsive gene expression is highly sensitized in STAG2-mutant CMK leukemia cells. Moreover, Wnt activity is enhanced in zebrafish mutant for cohesin subunits stag2b and rad21. Our results suggest that cohesin mutations could progress oncogenesis by enhancing Wnt signaling, and that targeting the Wnt pathway may represent a novel therapeutic strategy for cohesin-mutant cancers.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Mutações Sintéticas Letais/genética , Via de Sinalização Wnt/fisiologia , Animais , Divisão Celular , Linhagem Celular , Humanos , Peixe-Zebra , Coesinas
7.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178390

RESUMO

The growing trend for women to postpone childbearing has resulted in a dramatic increase in the incidence of aneuploid pregnancies. Despite the importance to human reproductive health, the events precipitating female age-related meiotic errors are poorly understood. To gain new insight into the molecular basis of age-related chromosome missegregation in human oocytes, we combined the transcriptome profiles of twenty single oocytes (derived from females divided into two groups according to age <35 and ≥35 years) with their chromosome status obtained by array comparative genomic hybridization (aCGH). Furthermore, we compared the transcription profile of the single oocyte with the surrounding cumulus cells (CCs). RNA-seq data showed differences in gene expression between young and old oocytes. Dysregulated genes play a role in important biological processes such as gene transcription regulation, cytoskeleton organization, pathways related to RNA maturation and translation. The comparison of the transcription profile of the oocyte and the corresponding CCs highlighted the differential expression of genes belonging to the G protein-coupled receptor superfamily. Finally, we detected the loss of a X chromosome in two oocytes derived from women belonging to the ≥35 years age group. These aneuploidies may be caused by the detriment of REEP4, an endoplasmic reticulum protein, in women aged ≥35 years. Here we gained new insight into the complex regulatory circuit between the oocyte and the surrounding CCs and uncovered a new putative molecular basis of age-related chromosome missegregation in human oocytes.


Assuntos
Cromossomos/genética , Oócitos/fisiologia , Transcriptoma/genética , Adulto , Aneuploidia , Células Cultivadas , Hibridização Genômica Comparativa/métodos , Células do Cúmulo/fisiologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Análise em Microsséries/métodos , Gravidez , Adulto Jovem
8.
J Exp Clin Cancer Res ; 38(1): 108, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823889

RESUMO

BACKGROUND: Cancer cells are characterized by chromosomal instability (CIN) and it is thought that errors in pathways involved in faithful chromosome segregation play a pivotal role in the genesis of CIN. Cohesin forms a large protein ring that binds DNA strands by encircling them. In addition to this central role in chromosome segregation, cohesin is also needed for DNA repair, gene transcription regulation and chromatin architecture. Though mutations in both cohesin and cohesin-regulator genes have been identified in many human cancers, the contribution of cohesin to cancer development is still under debate. METHODS: Normal mucosa, early adenoma, and carcinoma samples deriving from 16 subjects affected by colorectal cancer (CRC) were analyzed by OncoScan for scoring both chromosome gains and losses (CNVs) and loss of heterozygosity (LOH). Then the expression of SMC1A was analyzed by immunochemistry in 66 subjects affected by CRC. The effects of SMC1A overexpression and mutated SMC1A were analyzed in vivo using immunocompromised mouse models. Finally, we measured global gene expression profiles in induced-tumors by RNA-seq. RESULTS: Here we showed that SMC1A cohesin core gene was present as extra-copies, mutated, and overexpressed in human colorectal carcinomas. We then demonstrated that cohesin overexpression led to the development of aggressive cancers in immunocompromised mice through gene expression dysregulation. CONCLUSION: Collectively, these results support a role of defective cohesin in the development of human colorectal cancer.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Adenoma/genética , Adenoma/patologia , Adulto , Idoso , Animais , Proteínas de Ciclo Celular/biossíntese , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/biossíntese , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade
9.
Environ Mol Mutagen ; 60(1): 85-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365181

RESUMO

Several studies have demonstrated that overexposure to pesticides can reduce mammalian sperm quality, impairing male fertility. Chlorpyrifos (CPF), a widely used organophosphate pesticide, was shown to impair spermatogenesis by inducing the formation of highly reactive toxic intermediates. To gain further insight into the mechanisms underlying the cytotoxicity and genotoxicity of CPF, bovine spermatozoa were exposed in vitro to environmental CPF concentrations and the motility, in vitro fertilization rates, DNA fragmentation, chromatin alterations, and methylation patterns were assessed. Motility and in vitro fertilization rates were significantly reduced in spermatozoa exposed to CPF, while DNA fragmentation and putative chromatin deconstruction appeared to increase at higher pesticide concentrations. In situ hybridization was carried out with X and Y probes on sperm samples exposed to different CPF concentrations, and subsequent analysis highlighted a significant percentage of spermatozoa with a peculiar morphological malformation, in which a narrowing occurred at the level of the hybridization. Analysis of potential abnormalities in the methylation pattern of NESP55-GNAS and XIST promoters displayed no differentially methylated regions in GNAS promoter relative to the control, whereas spermatozoa exposed to 10 µg/mL CPF had increased methylation variance in one region of imprinted XIST promoter. Our results provide support that CPF can induce a genotoxic effect on spermatozoa, impairig their ability to fertilize and support preimplantation embryo development in vitro. These observations are worrying since altered levels of sporadic methylation in genes of male gametes may affect the success of reproduction and contribute to infertility. Environ. Mol. Mutagen. 60:85-95, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Clorpirifos/toxicidade , Cromatina/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Inseticidas/toxicidade , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Animais , Bovinos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Masculino , Gravidez , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Longo não Codificante/genética , Espermatozoides/metabolismo
10.
Fertil Steril ; 110(7): 1356-1366, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30503135

RESUMO

OBJECTIVE: To study whether slush nitrogen (SN) vs. liquid nitrogen (LN) vitrification affects human ovarian tissue gene expression and preserves follicle health during extended in vitro culture. DESIGN: Randomized experimental study. SETTING: University research laboratory. PATIENT(S): Ovarian biopsies collected by laparoscopic surgery from patients with benign gynaecologic conditions. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Ovarian strips were vitrified with LN or SN, warmed, and analyzed before or after culture for 9 days (d9) in gas-permeable dishes. Expression of genes involved in stress and toxicity pathways was analyzed in fresh and warmed strips by polymerase chain reaction (PCR) array and quantitative real-time-PCR. Fresh and vitrified/warmed strips were analyzed for follicle quality, progression, and viability before or after culture. RESULT(S): The SN vitrification preserved follicle quality better than LN (% grade 1 follicles: fresh control, 54.2; LN, 29.3; SN, 48.8). Quantitative reverse transcription-PCR demonstrated a noticeable up-regulation of 13 genes in LN samples (range, 10-35) and a markedly lower up-regulation of only 5 genes (range, 3.6-7.8) in SN samples. Long-term in vitro culture evidenced worse follicle quality and viability in LN samples than in both fresh and SN samples (% grade 1 follicle: fresh d0, 51.5; fresh d9, 41; LN d9, 16.4; SN d9, 55) and a highly significant reduction of primordial follicles and a concomitant increase of primary and secondary follicles in all samples. Follicle growth to the secondary stage was significantly higher in vitrified tissue than in fresh tissue, being better in SN than in LN vitrified tissue. CONCLUSION(S): Follicle quality, gene expression, viability, and progression are better preserved after SN vitrification.


Assuntos
Técnicas de Cultura de Células/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Nitrogênio/farmacologia , Oogênese/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Ovário , Vitrificação , Adulto , Células Cultivadas , Criopreservação/métodos , Feminino , Preservação da Fertilidade/métodos , Humanos , Técnicas de Maturação in Vitro de Oócitos/métodos , Nitrogênio/química , Oogênese/genética , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Controle de Qualidade , Fatores de Tempo , Vitrificação/efeitos dos fármacos
11.
Int J Mol Sci ; 18(11)2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29156651

RESUMO

chlorpyrifos (CPF) is an organophosphate insecticide used to control pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce cerebral cortex thinning, alteration of long-term brain cognitive function, and Parkinson-like symptoms, but the mechanisms of these processes are not fully understood. In this study, we aimed to gain a deeper understanding of the alterations induced in the brains of mice chronically exposed to CPF by dietary intake. For our purpose, we analysed F1 offspring (sacrificed at 3 and 8 months) of Mus musculus, treated in utero and postnatally with 3 different doses of CPF (0.1-1-10 mg/kg/day). Using RT² Profiler PCR Arrays, we evaluated the alterations in the expression of 84 genes associated with neurodegenerative diseases. In the brains of exposed mice, we evidenced a clear dose-response relationship for AChE inhibition and alterations of gene expression. Some of the genes that were steadily down-regulated, such as Pink1, Park 2, Sv2b, Gabbr2, Sept5 and Atxn2, were directly related to Parkinson's onset. Our experimental results shed light on the possibility that long-term CPF exposure may exert membrane signalling alterations which make brain cells more susceptible to develop neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Clorpirifos/toxicidade , Exposição Materna/efeitos adversos , Doença de Parkinson Secundária/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Exposição Dietética/efeitos adversos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inseticidas/toxicidade , Camundongos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Biossíntese de Proteínas/efeitos dos fármacos
12.
J Exp Zool B Mol Dev Evol ; 328(4): 360-370, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28317246

RESUMO

Sexual differentiation (SD) during development results in anatomical, metabolic, and physiological differences that involve not only the gonads, but also a variety of other biological structures, such as the brain, determining differences in morphology, behavior, and response in the breeding season. In many reptiles, whose sex is determined by egg incubation temperature, such as the leopard gecko, Eublepharis macularius, embryos incubated at different temperatures clearly differ in the volume of brain nuclei that modulate behavior. Based on the premise that "the developmental decision of gender does not flow through a single gene", we performed an analysis on E. macularius using three approaches to gain insights into the genes that may be involved in brain SD during the thermosensitive period. Using quantitative RT-PCR, we studied the expression of genes known to be involved in gonadal SD such as WNT4, SOX9, DMRT1, Erα, Erß, GnRH, P450 aromatase, PRL, and PRL-R. Then, further genes putatively involved in sex dimorphic brain differentiation were sought by differential display (DDRT-PCR) and PCR array. Our findings indicate that embryo exposure to different sex determining temperatures induces differential expression of several genes that are involved not only in gonadal differentiation (PRL-R, Wnt4, Erα, Erß, p450 aromatase, and DMRT1), but also in neural differentiation (TN-R, Adora2A, and ASCL1) and metabolic pathways (GP1, RPS15, and NADH12). These data suggest that the brains of SDT reptiles might be dimorphic at birth, thus behavioral experiences in postnatal development would act on a structure already committed to male or female.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Lagartos/metabolismo , Processos de Determinação Sexual/fisiologia , Animais , Feminino , Gônadas/fisiologia , Masculino , Reação em Cadeia da Polimerase , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA