RESUMO
BACKGROUND: The additive model of inheritance assumes that heterozygotes (Aa) are exactly intermediate in respect to homozygotes (AA and aa). While this model is commonly used in single-locus genetic association studies, significant deviations from additivity are well-documented and contribute to phenotypic variance across many traits and systems. This assumption can introduce type I and type II errors by overestimating or underestimating the effects of variants that deviate from additivity. Alternative genotype encoding strategies have been explored to account for different inheritance patterns, but they often incur significant computational or methodological costs. To address these challenges, we introduce PAGER (Phenotype Adjusted Genotype Encoding and Ranking), an efficient pre-processing method that encodes each genetic variant based on normalized mean phenotypic differences between diallelic genotype classes (AA, Aa, and aa). This approach more accurately reflects each variant's true inheritance model, improving model precision while minimizing the costs associated with alternative encoding strategies. RESULTS: Through extensive benchmarking on SNPs simulated with both binary and continuous phenotypes, we demonstrate that PAGER accurately represents various inheritance patterns (including additive, dominant, recessive, and heterosis), achieves levels of statistical power that meet or exceed other encoding strategies, and attains computation speeds up to 55 times faster than a similar method, EDGE. We also apply PAGER to publicly available real-world data and identify a novel, relevant putative QTL associated with body mass index in rats (Rattus norvegicus) that is not detected with the additive model. CONCLUSIONS: Overall, we show that PAGER is an efficient genotype encoding approach that can uncover sources of missing heritability and reveal novel insights in the study of complex traits while incurring minimal costs.
RESUMO
Opioid misuse, addiction, and associated overdose deaths remain global public health crises. Despite the tremendous need for pharmacological treatments, current options are limited in number, use, and effectiveness. Fundamental leaps forward in our understanding of the biology driving opioid addiction are needed to guide development of more effective medication-assisted therapies. This Review focuses on the omics-identified biological features associated with opioid addiction. Recent GWAS have begun to identify robust genetic associations, including variants in OPRM1, FURIN, and the gene cluster SCAI/PPP6C/RABEPK. An increasing number of omics studies of postmortem human brain tissue examining biological features (e.g., histone modification and gene expression) across different brain regions have identified broad gene dysregulation associated with overdose death among opioid misusers. Drawn together by meta-analysis and multi-omic systems biology, and informed by model organism studies, key biological pathways enriched for opioid addiction-associated genes are emerging, which include specific receptors (e.g., GABAB receptors, GPCR, and Trk) linked to signaling pathways (e.g., Trk, ERK/MAPK, orexin) that are associated with synaptic plasticity and neuronal signaling. Studies leveraging the agnostic discovery power of omics and placing it within the context of functional neurobiology will propel us toward much-needed, field-changing breakthroughs, including identification of actionable targets for drug development to treat this devastating brain disease.
Assuntos
Transtornos Relacionados ao Uso de Opioides , Humanos , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/patologia , Estudo de Associação Genômica Ampla , Animais , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , MultiômicaRESUMO
Genome-wide association studies typically evaluate the autosomes and sometimes the X Chromosome, but seldom consider the Y or mitochondrial Chromosomes. We genotyped the Y and mitochondrial Chromosomes in heterogeneous stock rats (Rattus norvegicus), an outbred population created from eight inbred strains. We identified 8 distinct Y and 4 distinct mitochondrial Chromosomes among the 8 founders. However, only two types of each nonrecombinant chromosome were observed in our modern heterogeneous stock rat population (generations 81-97). Despite the relatively large sample size, there were virtually no significant associations for behavioral, physiological, metabolome, or microbiome traits after correcting for multiple comparisons. However, both Y and mitochondrial Chromosomes were strongly associated with expression of a few genes located on those chromosomes, which provided a positive control. Our results suggest that within modern heterogeneous stock rats there are no Y and mitochondrial Chromosomes differences that strongly influence behavioral or physiological traits. These results do not address other ancestral Y and mitochondrial Chromosomes that do not appear in modern heterogeneous stock rats, nor do they address effects that may exist in other rat populations, or in other species.
RESUMO
Individual differences in self-control predict many health and life outcomes. Building on twin literature, we used genomic structural equation modeling to test the hypothesis that genetic influences on executive function and impulsivity predict independent variance in mental health and other outcomes. The impulsivity factor (comprising urgency, lack of premeditation, and other facets) was only modestly genetically correlated with low executive function (rg =.13). Controlling for impulsivity, low executive function was genetically associated with increased internalizing (ßg =.15), externalizing (ßg =.13), thought disorders (ßg =.38), compulsive disorders (ßg =.22), and chronotype (ßg =.11). Controlling for executive function, impulsivity was positively genetically associated with internalizing (ßg =.36), externalizing (ßg =.55), body mass index (ßg =.26), and insomnia (ßg =.35), and negatively genetically associated with compulsive disorders (ßg = -.17). Executive function and impulsivity were both genetically correlated with general cognitive ability and educational attainment. This work suggests that executive function and impulsivity are genetically separable and show independent associations with mental health.
RESUMO
Objective: The behavioral and diagnostic heterogeneity within human opioid use disorder (OUD) diagnosis is not readily captured in current animal models, limiting translational relevance of the mechanistic research that is conducted in experimental animals. We hypothesize that a non-linear clustering of OUD-like behavioral traits will capture population heterogeneity and yield subpopulations of OUD vulnerable rats with distinct behavioral and neurocircuit profiles. Methods: Over 900 male and female heterogeneous stock rats, a line capturing genetic and behavioral heterogeneity present in humans, were assessed for several measures of heroin use and rewarded and non-rewarded seeking behaviors. Using a non-linear stochastic block model clustering analysis, rats were assigned to OUD vulnerable, intermediate and resilient clusters. Additional behavioral tests and circuit analyses using c-fos protein activation were conducted on the vulnerable and resilient subpopulations. Results: OUD vulnerable rats exhibited greater heroin taking and seeking behaviors relative to those in the intermediate and resilient clusters. Akin to human OUD diagnosis, further vulnerable rat sub-clustering revealed subpopulations with different combinations of behavioral traits, including sex differences. Lastly, heroin cue-induced neuronal patterns of circuit activation differed between resilient and vulnerable phenotypes. Behavioral sex differences were recapitulated in patterns of circuitry activation, including males preferentially engaging extended amygdala stress circuitry, and females cortico-striatal drug cue-seeking circuitry. Conclusion: Using a non-linear clustering approach in rats, we captured behavioral diagnostic heterogeneity reflective of human OUD diagnosis. OUD vulnerability and resiliency were associated with distinct neuronal activation patterns, posing this approach as a translational tool in assessing neurobiological mechanisms underpinning OUD.
RESUMO
Delay discounting refers to the behavioral tendency to devalue rewards as a function of their delay in receipt. Heightened delay discounting has been associated with substance use disorders and multiple co-occurring psychopathologies. Human and animal genetic studies have established that delay discounting is heritable, but only a few associated genes have been identified. We aimed to identify novel genetic loci associated with delay discounting through a genome-wide association study (GWAS) using Heterogeneous Stock (HS) rats, a genetically diverse outbred population derived from eight inbred founder strains. We assessed delay discounting in 650 male and female HS rats using an adjusting amount procedure in which rats chose between smaller immediate sucrose rewards or a larger reward at various delays. Preference switch points were calculated and both exponential and hyperbolic functions were fitted to these indifference points. Area under the curve (AUC) and the discounting parameter k of both functions were used as delay discounting measures. GWAS for AUC, exponential k, and one indifference point identified significant loci on chromosomes 20 and 14. The gene Slc35f1, which encodes a member of the solute carrier family, was the sole gene within the chromosome 20 locus. That locus also contained an eQTL for Slc35f1, suggesting that heritable differences in the expression might be responsible for the association with behavior. Adgrl3, which encodes a latrophilin subfamily G-protein coupled receptor, was the sole gene within the chromosome 14 locus. These findings implicate novel genes in delay discounting and highlight the need for further exploration.
Assuntos
Desvalorização pelo Atraso , Estudo de Associação Genômica Ampla , Animais , Ratos , Masculino , Feminino , Recompensa , Locos de Características QuantitativasRESUMO
Affordable sequencing and genotyping methods are essential for large scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, non-human model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping-by-sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping-by-sequencing and more recently generated by low-coverage whole-genome-sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21x coverage) and low-coverage whole-genome-sequencing data from 8,760 heterogeneous stock rats (mean 0.27x coverage), we can impute 7.32 million bi-allelic single-nucleotide polymorphisms with a concordance rate >99.76% compared to high-coverage (mean 33.26x coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping-by-sequencing or low-coverage whole-genome-sequencing for accurate genotyping, and demonstrate techniques that may also be useful for other genetic studies in non-human subjects.
RESUMO
BACKGROUND: Genome-wide association studies (GWAS) have identified hundreds of common variants associated with alcohol consumption. In contrast, genetic studies of alcohol consumption that use rare variants are still in their early stages. No prior studies of alcohol consumption have examined whether common and rare variants implicate the same genes and molecular networks, leaving open the possibility that the two approaches might identify distinct biology. METHODS: To address this knowledge gap, we used publicly available alcohol consumption GWAS summary statistics (GSCAN, N = 666,978) and whole exome sequencing data (Genebass, N = 393,099) to identify a set of common and rare variants for alcohol consumption. We used gene-based analysis to implicate genes from common and rare variant analyses, which we then propagated onto a shared molecular network using a network colocalization procedure. RESULTS: Gene-based analysis of each dataset implicated 294 (common variants) and 35 (rare variants) genes, including ethanol metabolizing genes ADH1B and ADH1C, which were identified by both analyses, and ANKRD12, GIGYF1, KIF21B, and STK31, which were identified in only the rare variant analysis, but have been associated with other neuropsychiatric traits. Network colocalization revealed significant network overlap between the genes identified via common and rare variants. The shared network identified gene families that function in alcohol metabolism, including ADH, ALDH, CYP, and UGT. Seventy-one of the genes in the shared network were previously implicated in neuropsychiatric or substance use disorders but not alcohol-related behaviors (e.g. EXOC2, EPM2A, and CACNG4). Differential gene expression analysis showed enrichment in the liver and several brain regions. CONCLUSIONS: Genes implicated by network colocalization identify shared biology relevant to alcohol consumption, which also underlie neuropsychiatric traits and substance use disorders that are comorbid with alcohol use, providing a more holistic understanding of two disparate sources of genetic information.
RESUMO
Cannabis is one of the most widely used drugs globally. Decriminalization of cannabis is further increasing cannabis consumption. We performed genome-wide association studies (GWASs) of lifetime (N=131,895) and frequency (N=73,374) of cannabis use. Lifetime cannabis use GWAS identified two loci, one near CADM2 (rs11922956, p=2.40E-11) and another near GRM3 (rs12673181, p=6.90E-09). Frequency of use GWAS identified one locus near CADM2 (rs4856591, p=8.10E-09; r2 =0.76 with rs11922956). Both traits were heritable and genetically correlated with previous GWASs of lifetime use and cannabis use disorder (CUD), as well as other substance use and cognitive traits. Polygenic scores (PGSs) for lifetime and frequency of cannabis use associated cannabis use phenotypes in AllofUs participants. Phenome-wide association study of lifetime cannabis use PGS in a hospital cohort replicated associations with substance use and mood disorders, and uncovered associations with celiac and infectious diseases. This work demonstrates the value of GWASs of CUD transition risk factors.
RESUMO
Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N = 130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across hundreds of biomarkers, health, and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from the UK Biobank (UKB; N = 334,659). We observed consistent positive genetic correlations with substance use and obesity in both cohorts. Other genetic correlations were discrepant, including positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in the UKB, and genetic correlations with cognition that were negative in 23andMe but positive in the UKB. Phenome-wide association study using polygenic scores of coffee intake derived from 23andMe or UKB summary statistics also revealed consistent associations with increased odds of obesity- and red blood cell-related traits, but all other associations were cohort-specific. Our study shows that the genetics of coffee intake associate with substance use and obesity across cohorts, but also that GWAS performed in different populations could capture cultural differences in the relationship between behavior and genetics.
Assuntos
Café , Estudo de Associação Genômica Ampla , População Branca , Humanos , Reino Unido , Masculino , Feminino , População Branca/genética , Estudos de Coortes , Pessoa de Meia-Idade , Estados Unidos , Adulto , Idoso , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Age-related hearing impairment is the most common cause of hearing loss and is one of the most prevalent conditions affecting the elderly globally. It is influenced by a combination of environmental and genetic factors. The mouse and human inner ears are functionally and genetically homologous. Investigating the genetic basis of age-related hearing loss (ARHL) in an outbred mouse model may lead to a better understanding of the molecular mechanisms of this condition. We used Carworth Farms White (CFW) outbred mice, because they are genetically diverse and exhibit variation in the onset and severity of ARHL. The goal of this study was to identify genetic loci involved in regulating ARHL. Hearing at a range of frequencies was measured using Auditory Brainstem Response (ABR) thresholds in 946 male and female CFW mice at the age of 1, 6, and 10 months. We obtained genotypes at 4.18 million single nucleotide polymorphisms (SNP) using low-coverage (mean coverage 0.27x) whole-genome sequencing followed by imputation using STITCH. To determine the accuracy of the genotypes we sequenced 8 samples at >30x coverage and used calls from those samples to estimate the discordance rate, which was 0.45%. We performed genetic analysis for the ABR thresholds for each frequency at each age, and for the time of onset of deafness for each frequency. The SNP heritability ranged from 0 to 42% for different traits. Genome-wide association analysis identified several regions associated with ARHL that contained potential candidate genes, including Dnah11, Rapgef5, Cpne4, Prkag2, and Nek11. We confirmed, using functional study, that Prkag2 deficiency causes age-related hearing loss at high frequency in mice; this makes Prkag2 a candidate gene for further studies. This work helps to identify genetic risk factors for ARHL and to define novel therapeutic targets for the treatment and prevention of ARHL.
RESUMO
The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1 , a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1 , Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.
RESUMO
Transcriptome data is commonly used to understand genome function via quantitative trait loci (QTL) mapping and to identify the molecular mechanisms driving genome wide association study (GWAS) signals through colocalization analysis and transcriptome-wide association studies (TWAS). While RNA sequencing (RNA-seq) has the potential to reveal many modalities of transcriptional regulation, such as various splicing phenotypes, such studies are often limited to gene expression due to the complexity of extracting and analyzing multiple RNA phenotypes. Here, we present Pantry (Pan-transcriptomic phenotyping), a framework to efficiently generate diverse RNA phenotypes from RNA-seq data and perform downstream integrative analyses with genetic data. Pantry currently generates phenotypes from six modalities of transcriptional regulation (gene expression, isoform ratios, splice junction usage, alternative TSS/polyA usage, and RNA stability) and integrates them with genetic data via QTL mapping, TWAS, and colocalization testing. We applied Pantry to Geuvadis and GTEx data, and found that 4,768 of the genes with no identified expression QTL in Geuvadis had QTLs in at least one other transcriptional modality, resulting in a 66% increase in genes over expression QTL mapping. We further found that QTLs exhibit modality-specific functional properties that are further reinforced by joint analysis of different RNA modalities. We also show that generalizing TWAS to multiple RNA modalities (xTWAS) approximately doubles the discovery of unique gene-trait associations, and enhances identification of regulatory mechanisms underlying GWAS signal in 42% of previously associated gene-trait pairs. We provide the Pantry code, RNA phenotypes from all Geuvadis and GTEx samples, and xQTL and xTWAS results on the web.
RESUMO
BACKGROUND: Alcohol consumption is associated with numerous negative social and health outcomes. These associations may be direct consequences of drinking, or they may reflect common genetic factors that influence both alcohol consumption and other outcomes. METHODS: We performed exploratory phenome-wide association studies (PheWAS) of three of the best studied protective single nucleotide polymorphisms (SNPs) in genes encoding ethanol metabolising enzymes (ADH1B: rs1229984-T, rs2066702-A; ADH1C: rs698-T) using up to 1109 health outcomes across 28 phenotypic categories (e.g., substance-use, mental health, sleep, immune, cardiovascular, metabolic) from a diverse 23andMe cohort, including European (N ≤ 2,619,939), Latin American (N ≤ 446,646) and African American (N ≤ 146,776) populations to uncover new and perhaps unexpected associations. These SNPs have been consistently implicated by both candidate gene studies and genome-wide association studies of alcohol-related behaviours but have not been investigated in detail for other relevant phenotypes in a hypothesis-free approach in such a large cohort of multiple ancestries. To provide insight into potential causal effects of alcohol consumption on the outcomes significant in the PheWAS, we performed univariable two-sample and one-sample Mendelian randomisation (MR) analyses. FINDINGS: The minor allele rs1229984-T, which is protective against alcohol behaviours, showed the highest number of PheWAS associations across the three cohorts (N = 232, European; N = 29, Latin American; N = 7, African American). rs1229984-T influenced multiple domains of health. We replicated associations with alcohol-related behaviours, mental and sleep conditions, and cardio-metabolic health. We also found associations with understudied traits related to neurological (migraines, epilepsy), immune (allergies), musculoskeletal (fibromyalgia), and reproductive health (preeclampsia). MR analyses identified evidence of causal effects of alcohol consumption on liability for 35 of these outcomes in the European cohort. INTERPRETATION: Our work demonstrates that polymorphisms in genes encoding alcohol metabolising enzymes affect multiple domains of health beyond alcohol-related behaviours. Understanding the underlying mechanisms of these effects could have implications for treatments and preventative medicine. FUNDING: MVJ, NCK, SBB, SSR and AAP were supported by T32IR5226 and 28IR-0070. SSR was also supported by NIDA DP1DA054394. NCK and RBC were also supported by R25MH081482. ASH was supported by funds from NIAAA K01AA030083. JLMO was supported by VA 1IK2CX002095. JLMO and JJMM were also supported by NIDA R21DA050160. JJMM was also supported by the Kavli Postdoctoral Award for Academic Diversity. EGA was supported by K01MH121659 from the NIMH/NIH, the Caroline Wiess Law Fund for Research in Molecular Medicine and the ARCO Foundation Young Teacher-Investigator Fund at Baylor College of Medicine. MSA was supported by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus (FSE+) (P19/01224, PI22/00464 and CP22/00128).
Assuntos
Consumo de Bebidas Alcoólicas , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Fenótipo , Polimorfismo de Nucleotídeo Único , Humanos , Consumo de Bebidas Alcoólicas/genética , Feminino , Estudos de Coortes , Masculino , Fenômica , Predisposição Genética para Doença , Álcool Desidrogenase/genética , Genótipo , AlelosRESUMO
Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.
Assuntos
Tabagismo , Humanos , Tabagismo/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Estados Unidos/epidemiologia , Masculino , Feminino , Registros Eletrônicos de SaúdeRESUMO
Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues; both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1,645 genetically diverse heterogeneous stock (HS) rats. We tested HS rats in a Pavlovian conditioned approach task, in which we characterized the individual responses to food-associated stimuli ("cues"). Rats exhibited either cue-directed "sign-tracking" behavior or food-cup directed "goal-tracking" behavior. We then used the conditioned reinforcement procedure to determine whether rats would perform a novel operant response for unrewarded presentations of the cue. We found that these measures were moderately heritable (SNP heritability, h2 = .189-.215). GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits we examined. Interval sizes of these QTLs varied widely. 7 traits shared a QTL on chromosome 1 that contained a few genes (e.g. Tenm4, Mir708) that have been associated with substance use disorders and other mental health traits in humans. Other candidate genes (e.g. Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on other behavioral measures in HS rats and found that regions containing QTLs on chromosome 1 were also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive salience and provide further support for a relationship between attribution of incentive salience and drug abuse-related traits.
RESUMO
Genome-wide association studies (GWAS) have identified hundreds of common variants associated with alcohol consumption. In contrast, rare variants have only begun to be studied for their role in alcohol consumption. No studies have examined whether common and rare variants implicate the same genes and molecular networks. To address this knowledge gap, we used publicly available alcohol consumption GWAS summary statistics (GSCAN, N=666,978) and whole exome sequencing data (Genebass, N=393,099) to identify a set of common and rare variants for alcohol consumption. Gene-based analysis of each dataset have implicated 294 (common variants) and 35 (rare variants) genes, including ethanol metabolizing genes ADH1B and ADH1C, which were identified by both analyses, and ANKRD12, GIGYF1, KIF21B, and STK31, which were identified only by rare variant analysis, but have been associated with related psychiatric traits. We then used a network colocalization procedure to propagate the common and rare gene sets onto a shared molecular network, revealing significant overlap. The shared network identified gene families that function in alcohol metabolism, including ADH, ALDH, CYP, and UGT. 74 of the genes in the network were previously implicated in comorbid psychiatric or substance use disorders, but had not previously been identified for alcohol-related behaviors, including EXOC2, EPM2A, CACNB3, and CACNG4. Differential gene expression analysis showed enrichment in the liver and several brain regions supporting the role of network genes in alcohol consumption. Thus, genes implicated by common and rare variants identify shared functions relevant to alcohol consumption, which also underlie psychiatric traits and substance use disorders that are comorbid with alcohol use.
RESUMO
The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined â¼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.
Assuntos
Genoma , Genômica , Ratos , Animais , Genoma/genética , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma , Variação Genética/genéticaRESUMO
PURPOSE: Epistasis, the interaction between two or more genes, is integral to the study of genetics and is present throughout nature. Yet, it is seldom fully explored as most approaches primarily focus on single-locus effects, partly because analyzing all pairwise and higher-order interactions requires significant computational resources. Furthermore, existing methods for epistasis detection only consider a Cartesian (multiplicative) model for interaction terms. This is likely limiting as epistatic interactions can evolve to produce varied relationships between genetic loci, some complex and not linearly separable. METHODS: We present new algorithms for the interaction coefficients for standard regression models for epistasis that permit many varied models for the interaction terms for loci and efficient memory usage. The algorithms are given for two-way and three-way epistasis and may be generalized to higher order epistasis. Statistical tests for the interaction coefficients are also provided. We also present an efficient matrix based algorithm for permutation testing for two-way epistasis. We offer a proof and experimental evidence that methods that look for epistasis only at loci that have main effects may not be justified. Given the computational efficiency of the algorithm, we applied the method to a rat data set and mouse data set, with at least 10,000 loci and 1,000 samples each, using the standard Cartesian model and the XOR model to explore body mass index. RESULTS: This study reveals that although many of the loci found to exhibit significant statistical epistasis overlap between models in rats, the pairs are mostly distinct. Further, the XOR model found greater evidence for statistical epistasis in many more pairs of loci in both data sets with almost all significant epistasis in mice identified using XOR. In the rat data set, loci involved in epistasis under the XOR model are enriched for biologically relevant pathways. CONCLUSION: Our results in both species show that many biologically relevant epistatic relationships would have been undetected if only one interaction model was applied, providing evidence that varied interaction models should be implemented to explore epistatic interactions that occur in living systems.