Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 720: 137333, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32146391

RESUMO

Short-chain perfluoroalkyl acids (PFAAs) have shown a high potential for plant (crop) uptake, making them possibly significant contributors to the total dietary exposure to PFAAs. The plant uptake of PFAAs is a complex process that needs better characterization, as it does not only depend on perfluoroalkyl chain length, but also on their polar terminal group, on the plant species and the exposure media. Here, a plant uptake study with nine perfluoroalkyl acids (PFAAs) was carried out under the hydroponic (soilless) exposure conditions. Red chicory was grown in a nutrient solution, spiked with PFAAs mixture at three different concentrations (i.e. 62.5, 125 and 250 µg/L), in order to extend the range of levels tested and reported in the literature so far. Bioaccumulation metrics and transpiration stream concentration factors (TSCFs) were employed for the plant uptake characterization and consequent comparison with the results of soil uptake experiment we previously performed with the same crop. The results showed that calculated root concentration factors (RCFs) increase with PFAA chain length, while the opposite chain length dependence was present for shoots. Plants from two treatments with the highest PFAAs concentrations manifested physiological changes (discoloration, inhibited roots and leaves growth), despite of the used exposure concentrations being much lower than previously published phytotoxicity thresholds. A comparison among RCFs and TSCFs derived from hydroponic and from the soil experiment has emphasized their different magnitudes and PFAAs chain length dependence patterns. They could not be ascribed only to soil sorption as a process decreasing PFAAs bioavailability for plants, but also to developmental differences between the root systems formed in soil and in nutrient solution and to the potential competitive PFAAs sorption to roots in hydroponics. The interchangeable use of bioaccumulation and translocation parameters derived in hydroponic and soil systems would lead to erroneous conclusions and plant uptake predictions.


Assuntos
Cichorium intybus , Disponibilidade Biológica , Fluorocarbonos , Raízes de Plantas , Solo
2.
Sci Total Environ ; 708: 134766, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31791778

RESUMO

Perfluoroalkyl acids (PFAAs), particularly short-chained ones, have high potential for crop uptake, posing a threat to human health in contaminated areas. There is a scarcity of studies using contaminated water as the medium for PFAAs delivery to crops, and a lack of data on the partitioning of PFAA mixtures in growing media. In this context, a controlled experimental study was carried out in a greenhouse to investigate the uptake of a PFAA mixture into red chicory, a typical crop from a major PFAA contamination hot-spot in northern Italy, under treatments with environmentally relevant concentrations in spiked irrigation water and soil, separately and simultaneously. To our knowledge, this is the first study involving multiple exposure media and laboratory adsorption/desorption batch tests as a way of assessing the decrease in the bioavailability of PFAAs from soil. Exposure concentrations for each of the 9 utilized PFAAs were 0, 1, 10 and 80 µg/L in irrigation water and 0, 100 and 200 ng/gdw in soil, combined into 12 treatments. The highest bioaccumulation was measured for PFBA in roots (maximum of 43 µg/gdw), followed by leaves and heads of the chicory plants in all treatments, with the concentrations exponentially decreasing with an increasing PFAA chain length in all plant compartments. The use of irrigation water as the delivery medium increased the transport of PFAAs to the aerial chicory parts, long-chain substances in particular. Additionally, the distribution of PFAAs in the soil was assessed by depth and compared with laboratory measured soil-water equilibrium partition coefficients, revealing only partial dependency of PFAAs bioavailability on the adsorption in soil.


Assuntos
Cichorium intybus , Fluorocarbonos , Humanos , Itália , Solo , Poluentes do Solo , Poluentes Químicos da Água
3.
Environ Int ; 119: 66-78, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29935425

RESUMO

Over the past decades, per- and polyfluoroalkyl substances (PFASs) found in environmental matrices worldwide have raised concerns due to their toxicity, ubiquity and persistence. A widespread pollution of groundwater and surface waters caused by PFASs in Northern Italy has been recently discovered, becoming a major environmental issue, also because the exact risk for humans and nature posed by this contamination is unclear. Here, the Po River in Northern Italy was selected as a study area to assess the ecological risk posed by perfluoroalkyl acids (PFAAs), a class of PFASs, considering the noticeable concentration of various PFAAs detected in the Po waters over the past years. Moreover, the Po has a large environmental and socio-economic importance: it is the largest Italian river and drains a densely inhabited, intensely cultivated and heavily industrialized watershed. Predicted no-effect concentrations (PNECs) were derived using two regulated methodologies, assessment factors (AFs) and species sensitivity distribution (SSD), which rely on published ecotoxicological laboratory tests. Results were compared to those of a novel methodology using the mechanistic ecosystem model AQUATOX to compute PNECs in an ecologically-sound manner, i.e. considering physical, chemical, biological and ecological processes in the river. The model was used to quantify how the biomasses of the modelled taxa in the river food web deviated from natural conditions due to varying inputs of the chemicals. PNEC for each chemical was defined as the lowest chemical concentration causing a non-negligible yearly biomass loss for a simulated taxon with respect to a control simulation. The investigated PFAAs were Perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic acid (PFOS) as long-chained compounds, and Perfluorobutanoic acid (PFBA) and Perfluorobutanesulfonic acid (PFBS) as short-chained homologues. Two emerging contaminants, Linear Alkylbenzene Sulfonate (LAS) and triclosan, were also studied to assess the performance of the three methodologies for chemicals whose ecotoxicology and environmental fate are well-studied. The most precautionary approach was the use of AFs generally followed by SSD and then AQUATOX, except for PFOS, for which AQUATOX yielded a much lower PNEC compared to the other approaches since, unlike the other two methodologies, it explicitly simulates sublethal toxicity and indirect ecological effects. Our findings highlight that neglecting the role of ecological processes when extrapolating from laboratory tests to ecosystems can result in under-protective threshold concentrations for chemicals. Ecosystem models can complement existing laboratory-based methodologies, and the use of multiple methods for deriving PNECs can help to clarify uncertainty in ecological risk estimates.


Assuntos
Fluorocarbonos , Cadeia Alimentar , Rios/química , Poluentes Químicos da Água , Ecotoxicologia , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Itália , Modelos Biológicos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Sci Total Environ ; 541: 839-856, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26437354

RESUMO

The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events.


Assuntos
Poluentes Atmosféricos/análise , Aeronaves , Monitoramento Ambiental , Emissões de Veículos/análise , Poluição do Ar/estatística & dados numéricos , Aeroportos , Atmosfera/química , Cidades , Europa (Continente) , Meteorologia , Modelos Teóricos , Material Particulado/análise
5.
Mar Pollut Bull ; 86(1-2): 481-493, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25044042

RESUMO

The northern Gulf of Aqaba is an oligotrophic water body hosting valuable coral reefs. In the Gulf, phytoplankton dynamics are driven by an annual cycle of stratification and mixing. Superimposed on that fairly regular pattern was the establishment of a shallow-water fish-farm initiative that increased gradually until its activity was terminated in June 2008. Nutrient, water temperature, irradiation, phytoplankton data gathered in the area during the years 2007-2009, covering the peak of the fish-farm activity and its cessation, were analyzed by means of statistical analyses and ecological models of phytoplankton dynamics. Two datasets, one from an open water station and one next to the fish farms, were used. Results show that nutrient concentrations and, consequently, phytoplankton abundance and seasonal succession were radically altered by the pollution originating from the fish-farm in the sampling station closer to it, and also that the fish-farm might even have influenced the open water station.


Assuntos
Aquicultura , Fitoplâncton/fisiologia , Poluentes da Água , Animais , Recifes de Corais , Pesqueiros , Peixes , Geografia , Oceano Índico , Israel , Jordânia , Microalgas/fisiologia , Dinâmica Populacional , Estações do Ano , Temperatura
6.
Waste Manag ; 33(7): 1607-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23660493

RESUMO

The Biopotentiality Index is a landscape ecology indicator, which can be used to estimate the latent energy of a given land and to assess the environmental impacts due to the loss of naturalness on a landscape scale. This indicator has been applied to estimate the effectiveness of the measures put in place to provide an environmental compensation for the revamping of a composting plant. These compensation measures are represented by a green belt with a minimum width of 25 m all around the plant, representing both a windbreak and a buffer zone, and by two wide wooded zones acting as core natural areas. This case-study shows that the compensation index could be used as a key tool in order to negotiate the acceptance of waste treatment plant with the population.


Assuntos
Ecologia/métodos , Solo , Gerenciamento de Resíduos/métodos , Ecologia/normas , Meio Ambiente , Itália , Modelos Estatísticos , Análise Espaço-Temporal , Incerteza
7.
Mar Pollut Bull ; 56(9): 1609-17, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18649896

RESUMO

Socio-economic development in Europe has exerted increasing pressure on the marine environment. Eutrophication, caused by nutrient enrichment, is evident in regions of all European seas. Its severity varies but has, in places, adversely impacted socio-economic activities. This paper aims to evaluate the effectiveness of recently adopted policies to reduce anthropogenic nutrient inputs to European seas. Nitrogen and phosphorus budgets were constructed for three different periods (prior to severe eutrophication, during severe eutrophication and contemporary) to capture changes in the relative importance of different nutrient sources in four European seas suffering from eutrophication (Baltic Proper, coastal North Sea, Northern Adriatic and North-Western Black Sea Shelf). Policy success is evident for point sources, notably for P in the Baltic and North Seas, but reduction of diffuse sources has been more problematic.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Eutrofização/fisiologia , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Europa (Continente) , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA