Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e30832, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803902

RESUMO

Fatigue assessment of components subjected to random loads is a challenging task both due to the variability in amplitude and frequency of the loads and for the computational times required to perform classical time domain fatigue analysis. The frequency domain approach to fatigue life assessment offers a solution by utilizing the power spectral density of the random load, requiring minimal computational effort. However, frequency domain methods are limited to stationary Gaussian signals, while real-world loads often exhibit non-Gaussian characteristics. Previous research proposed formulas to extend frequency domain methods to non-Gaussian cases, but they require knowledge of the parameters related to non-Gaussianity of the component's stress (skewness and kurtosis), which would require a time domain analysis of the stress history on the component and a strong reduction of the computational advantages. This paper aims to address this gap by conducting an extensive campaign of numerical simulations to evaluate the influence of various parameters on the degree of non-Gaussianity of the response of a system. A single-dof mass-spring-damper system was subjected to non-Gaussian random loads of different natures, and the response is analyzed to determine the values of skewness and kurtosis. The study investigated the influence on non-normality indexes of the system's output of several input parameters, which include both the characteristics of the input load and the properties of the dynamic system. The findings contribute to a better understanding of non-Gaussianity in dynamic systems and pave the way for conducting efficient fatigue analyses in the frequency domain. Future work will extend the study to non-stationary random loads, further advancing the understanding of non-Gaussianity and non-stationarity in dynamic systems.

2.
Sensors (Basel) ; 23(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37299869

RESUMO

This paper presents the development and validation of a low-cost device for real-time detection of fatigue damage of structures subjected to vibrations. The device consists of an hardware and signal processing algorithm to detect and monitor variations in the structural response due to damage accumulation. The effectiveness of the device is demonstrated through experimental validation on a simple Y-shaped specimen subjected to fatigue loading. The results show that the device can accurately detect structural damage and provide real-time feedback on the health status of the structure. The low-cost and easy-to-implement nature of the device makes it promising for use in structural health monitoring applications in various industrial sectors.


Assuntos
Processamento de Sinais Assistido por Computador , Vibração , Humanos , Algoritmos , Computadores , Análise de Falha de Equipamento/instrumentação , Fenômenos Mecânicos
3.
Materials (Basel) ; 15(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35160801

RESUMO

Additive manufactured structures are replacing the corresponding ones realized with classical manufacturing technique. As for metallic structures, 3D printed components are generally subjected to dynamic loading conditions which can lead to fatigue failure. In this context, it is useful, and sometimes mandatory, to determine the fatigue life of such components through numerical simulation. The methods currently available in literature for the estimation of fatigue life were originally developed for metallic structures and, therefore, it is now necessary to verify their applicability also for components fabricated with different materials. To this end, in the current activity three of the most used spectral methods for the estimation of fatigue life were used to determine the fatigue life of a 3D printed Y-shaped specimen realized in polylactic acid subjected to random loads with the aim of determining their adaptability also for this kind of materials. To certify the accuracy of the numerical prediction, a set of experimental tests were conducted in order to obtain the real fatigue life of the component and to compare the experimental results with those numerically obtained. The obtained outcomes showed there is an excellent match between the numerical and the experimental data, thus certifying the possibility of using the investigated spectral methods to predict the fatigue life of additive manufactured components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA