Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nanoscale ; 14(36): 13132-13140, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36052773

RESUMO

Copper foams have been shown to electrocatalyze the carbon dioxide reduction reaction (CO2RR) to formate (HCOO-) with significant faradaic efficiency (FE) at low overpotentials. Unlike the CO2RR electrocatalyzed at copper foils, the CO2RR electrocatalyzed at porous copper foams selects for HCOO- essentially to the exclusion of hydrocarbon products. Formate is an environmentally friendly organic acid with many applications such as food preservation, textile processing, de-icing, and fuel in fuel cells. Thus, HCOO- is an attractive product from the CO2RR if it is produced at an overpotential lower than that at other electrocatalysts. In this study, grazing incidence X-ray diffraction (GIXRD) was used to identify the dominant surface facet of porous copper foams that accounts for its selectivity for HCOO- during the CO2RR. Included are data from the CO2RR at different temperatures using copper foams as the electrocatalyst. Under optimal reaction conditions at 2 °C, the FE for converting CO2 to HCOO- at Cu foams approaches 50% while the FE for hydrogen gas (H2) falls below 40%, a significant departure from that obtained at polycrystalline Cu foils. Computational studies by others have proposed (200) and (111) facets of Cu foils thermodynamically favour methane and other hydrocarbons, CO, HCOO- from the CO2RR. Results from the GIXRD studies indicate Cu foams are dominated by the (111) facet, which accounts for the selectivity of Cu foams toward HCOO- regardless of temperature used for the CO2RR.

2.
Nat Commun ; 11(1): 3622, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681030

RESUMO

Development of efficient catalysts for selective electroreduction of CO2 to high-value products is essential for the deployment of carbon utilization technologies. Here we present a scalable method for preparing Cu electrocatalysts that favor CO2 conversion to C2+ products with faradaic efficiencies up to 72%. Grazing-incidence X-ray diffraction data confirms that anodic halogenation of electropolished Cu foils in aqueous solutions of KCl, KBr, or KI creates surfaces of CuCl, CuBr, or CuI, respectively. Scanning electron microscopy and energy dispersive X-ray spectroscopy studies show that significant changes to the morphology of Cu occur during anodic halogenation and subsequent oxide-formation and reduction, resulting in catalysts with a high density of defect sites but relatively low roughness. This work shows that efficient conversion of CO2 to C2+ products requires a Cu catalyst with a high density of defect sites that promote adsorption of carbon intermediates and C-C coupling reactions while minimizing roughness.

3.
Nanoscale ; 11(25): 12075-12079, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31215587

RESUMO

We prepared micrometer long Cu nanowires (NWs) of 25 and 50 nm diameters and studied their electrocatalysis for electrochemical reduction of CO/CO2 in 0.1 M KHCO3 at room temperature. The 50 nm NWs showed better selectivity than the 25 nm NWs, and catalyzed CO reduction to C2-hydrocarbons (C2H4 + C2H6) with a combined faradaic efficiency (FE) of 60% (C2H4 FE of 35% and mass activity of 4.25 A g-1 Cu) at -1.1 V (vs. reversible hydrogen electrode). The NW-catalyzed CO2 reduction is less efficient due to the extra CO2 to CO step required for the formation of C2-hydrocarbons. This experimental evidence combined with DFT calculations suggests that CO is an important intermediate and NWs provide a large Cu(100) surface for *CO hydrogenation (to *CHO) and *CO-*CHO coupling, leading to more selective reduction of CO than CO2 towards C2-hydrocarbons.

4.
ACS Appl Mater Interfaces ; 8(36): 24168-76, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27579593

RESUMO

Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance.

5.
ACS Chem Neurosci ; 7(10): 1325-1330, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27529437

RESUMO

Application of an electric field (EF) has long been used to induce axon outgrowth following nerve injuries. The response of mammalian neurons (e.g., axon length, axon guidance) from the central nervous system (CNS) to an EF, however, remains unclear, whereas those from amphibian or avian neuron models have been well characterized. Thus, to determine an optimal EF for axon outgrowth of mammalian CNS neurons, we applied a wide range of EF to rat hippocampal neurons. Our results showed that EF with either a high magnitude (100 mV/mm or higher) or long exposure time (10 h or longer) with low magnitude (10-30 mV/mm) caused a neurite collapse and cell death. We also investigated whether neuronal response to an EF is altered depending on the growth stage of neuron cultures by applying 30 mV/mm to cells from 1 to 11 days in vitro (DIV). Neurons showed the turnover of axon outgrowth pattern when electrically stimulated between 4-5 DIV at which point neurons have both axonal and dendritic formation. The findings of this study suggest that the developmental stage of neurons is an important factor to consider when using EF as a potential method for axon regeneration in mammalian CNS neurons.


Assuntos
Axônios/fisiologia , Crescimento Celular , Campos Eletromagnéticos , Hipocampo/fisiologia , Animais , Morte Celular/fisiologia , Células Cultivadas , Estimulação Elétrica , Hipocampo/embriologia , Processamento de Imagem Assistida por Computador , Microscopia , Ratos Sprague-Dawley
6.
Sci Rep ; 5: 17062, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26593337

RESUMO

Image analysis software is an essential tool used in neuroscience and neural engineering to evaluate changes in neuronal structure following extracellular stimuli. Both manual and automated methods in current use are severely inadequate at detecting and quantifying changes in neuronal morphology when the images analyzed have a low signal-to-noise ratio (SNR). This inadequacy derives from the fact that these methods often include data from non-neuronal structures or artifacts by simply tracing pixels with high intensity. In this paper, we describe Neuron Image Analyzer (NIA), a novel algorithm that overcomes these inadequacies by employing Laplacian of Gaussian filter and graphical models (i.e., Hidden Markov Model, Fully Connected Chain Model) to specifically extract relational pixel information corresponding to neuronal structures (i.e., soma, neurite). As such, NIA that is based on vector representation is less likely to detect false signals (i.e., non-neuronal structures) or generate artifact signals (i.e., deformation of original structures) than current image analysis algorithms that are based on raster representation. We demonstrate that NIA enables precise quantification of neuronal processes (e.g., length and orientation of neurites) in low quality images with a significant increase in the accuracy of detecting neuronal changes post-stimulation.

7.
Nanoscale ; 7(22): 10267-78, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25992964

RESUMO

Nanoreactors are material structures that provide engineered internal cavities that create unique confined nanoscale environments for chemical reactions. Crumpled graphene nanoparticles or "nanosacks" may serve as nanoreactors when filled with reactive or catalytic particles and engineered for a specific chemical function. This article explores the behavior of crumpled graphene nanoreactors containing nanoscale ZnO, Ag, Ni, Cu, Fe, or TiO2 particles, either alone or in combination, in a series of case studies designed to reveal their fundamental behaviors. The first case study shows that ZnO nanoparticles undergo rapid dissolution inside the nanoreactor cavity accompanied by diffusive release of soluble products to surrounding aqueous media through the irregular folded shell. This behavior demonstrates the open nature of the sack structure, which facilitates rapid small-molecule exchange between inside and outside that is a requirement for nanoreactor function. In a case study on copper and silver nanoparticles, encapsulation in graphene nanoreactors is shown in some cases to enhance their oxidation rate in aqueous media, which is attributed to electron transfer from the metal core to graphene that bypasses surface oxides and allows reduction of molecular oxygen on the high-area graphene shell. Nanoreactors also allow particle-particle electron transfer interactions that are mediated by the connecting conductive graphene, which give rise to novel behaviors such as galvanic protection of Ag nanoparticles in Ag/Ni-filled nanoreactors, and the photochemical control of Ag-ion release in Ag/TiO2-filled nanoreactors. It is also shown that internal graphene structures within the sacks provide pockets that reduce particle mobility and inhibit particle sintering during thermal treatment. Finally, these novel behaviors are used to suggest and demonstrate several potential applications for graphene nanoreactors in catalysts, controlled release, and environmental remediation.

8.
Chem Commun (Camb) ; 51(27): 5947-50, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25735788

RESUMO

An iridium(III) trihydride complex supported by a pincer ligand with a hydrogen bond donor in the secondary coordination sphere promotes the electrocatalytic reduction of CO2 to formate in water/acetonitrile with excellent Faradaic efficiency and low overpotential. Preliminary mechanistic experiments indicate formate formation is facile while product release is a kinetically difficult step.

9.
ACS Appl Mater Interfaces ; 5(16): 7825-30, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23927403

RESUMO

Viologens, either as anions in solution or as pendant substituents to pyrrole, were incorporated as dopants to electrodeposited films of polypyrrole. The resulting polymer films exhibited redox activity at -0.5 V vs Ag/AgCl. The film consisting of polypyrrole with pendant viologens exhibited the best charge-discharge behavior with a maximum capacity of 55 mAh/g at a discharge current of 0.25 mA/cm(2). An anode consisting of polypyrrole (pPy) doped with viologen (V) was coupled to a cathode consisting of pPy doped with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to yield a polymer-based battery with a cell electromotive force (emf) of 1.0 V, maximum capacity of 16 mAh/g, and energy density of 15 Wh/kg.


Assuntos
Fontes de Energia Elétrica , Polímeros/química , Viologênios/química , Condutividade Elétrica , Eletrodos , Pirróis/química , Ácidos Sulfônicos/química
10.
J Cell Biochem ; 114(10): 2293-305, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23606409

RESUMO

3-epi-1α,25-dihydroxyvitamin D3 (3-epi-1α,25(OH)2D3), a natural metabolite of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), exhibits potent vitamin D receptor (VDR)-mediated actions such as inhibition of keratinocyte growth or suppression of parathyroid hormone secretion. These VDR-mediated actions of 3-epi-1α,25(OH)2D3 needed an explanation as 3-epi-1α,25(OH)2D3, unlike 1α,25(OH)2D3, exhibits low affinity towards VDR. Metabolic stability of 3-epi-1α,25(OH)2D3 over 1α,25(OH)2D3 has been hypothesized as a possible explanation. To provide further support for this hypothesis, we now performed comparative metabolism studies between 3-epi-1α,25(OH)2D3 and 1α,25(OH)2D3 using both the technique of isolated rat kidney perfusion and purified rat CYP24A1 in a cell-free reconstituted system. For the first time, these studies resulted in the isolation and identification of 3-epi-calcitroic acid as the final inactive metabolite of 3-epi-1α,25(OH)2D3 produced by rat CYP24A1. Furthermore, under identical experimental conditions, it was noted that the amount of 3-epi-calcitroic acid produced from 3-epi-1α,25(OH)2D3 is threefold less than that of calcitroic acid, the analogous final inactive metabolite produced from 1α,25(OH)2D3 . This key observation finally led us to conclude that the rate of overall side-chain oxidation of 3-epi-1α,25(OH)2D3 by rat CYP24A1 leading to its final inactivation is slower than that of 1α,25(OH)2D3. To elucidate the mechanism responsible for this important finding, we performed a molecular docking analysis using the crystal structure of rat CYP24A1. Docking results suggest that 3-epi-1α,25(OH)2D3, unlike 1α,25(OH)2D3, binds to CYP24A1 in an alternate configuration that destabilizes the formation of the enzyme-substrate complex sufficiently to slow the rate at which 3-epi-1α,25(OH)2D3 is inactivated by CYP24A1 through its metabolism into 3-epi-calcitroic acid.


Assuntos
Hidroxicolecalciferóis/metabolismo , Simulação de Dinâmica Molecular , Esteroide Hidroxilases/metabolismo , Vitamina D/análogos & derivados , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Ratos , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase
11.
Biomaterials ; 34(11): 2694-700, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23352042

RESUMO

The E4 isoform of apolipoprotein (apoE4) is known to be a major risk factor for Alzheimer's Disease (AD). Previous in vitro studies have shown apoE4 to have a negative effect on neuronal outgrowth when incubated with lipids. The effect of apoE4 itself on the development of neurons from the central nervous system (CNS), however, has not been well characterized. Consequently, apoE4 alone has not been pursued as a substrate for neuronal cultures. In this study, the effect of surface-bound apoE4 on developmental features of rat hippocampal neurons was examined. We show that apoE4 substrates elicit significantly enhanced values in all developmental features at day 2 of culture when compared to laminin (LN) substrates, which is the current substrate-of-choice for neuronal cultures. Interestingly, the adhesion of hippocampal neurons was found to be significantly lower on LN substrates than on glass substrates, but the axon lengths on both substrates were similar. In addition, this study demonstrates that the adhesion- and growth-enhancing effects of apoE4 substrates are not mediated by heparan sulfate proteoglycans (HSPGs), proteins that have been indicated to function as receptors or co-receptors for apoE4. In the absence of lipids, apoE4 appears to use an unknown pathway for up-regulating neuronal adhesion and neurite outgrowth. Our results indicate that apoE4 is better than LN as a substrate for primary cultures of CNS neurons and should be considered in the design of tissue engineered CNS.


Assuntos
Apolipoproteína E4/metabolismo , Hipocampo/citologia , Neurônios/citologia , Cultura Primária de Células/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Adesão Celular , Células Cultivadas , Proteoglicanas de Heparan Sulfato/metabolismo , Hipocampo/metabolismo , Laminina/metabolismo , Neurônios/metabolismo , Ratos , Fatores de Risco , Regulação para Cima
12.
J Neurosci Methods ; 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23253748

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

13.
Nano Lett ; 12(2): 602-9, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22200183

RESUMO

In this work, we report the design, fabrication, and characterization of novel biochemical sensors consisting of nanoscale grooves and slits milled in a metal film to form two-arm, three-beam, planar plasmonic interferometers. By integrating thousands of plasmonic interferometers per square millimeter with a microfluidic system, we demonstrate a sensor able to detect physiological concentrations of glucose in water over a broad wavelength range (400-800 nm). A wavelength sensitivity between 370 and 630 nm/RIU (RIU, refractive index units), a relative intensity change between ~10(3) and 10(6) %/RIU, and a resolution of ~3 × 10(-7) in refractive index change were experimentally measured using typical sensing volumes as low as 20 fL. These results show that multispectral plasmonic interferometry is a promising approach for the development of high-throughput, real-time, and extremely compact biochemical sensors.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/análise , Nanoestruturas/química , Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/instrumentação , Nanotecnologia/instrumentação , Prata/química , Ressonância de Plasmônio de Superfície/instrumentação
14.
Small ; 7(19): 2775-85, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21818846

RESUMO

This article reports a direct chemical pathway for antioxidant deactivation on the surfaces of carbon nanomaterials. In the absence of cells, carbon nanotubes are shown to deplete the key physiological antioxidant glutathione (GSH) in a reaction involving dissolved dioxygen that yields the oxidized dimer, GSSG, as the primary product. In both chemical and electrochemical experiments, oxygen is only consumed at a significant steady-state rate in the presence of both nanotubes and GSH. GSH deactivation occurs for single- and multi-walled nanotubes, graphene oxide, nanohorns, and carbon black at varying rates that are characteristic of the material. The GSH depletion rates can be partially unified by surface area normalization, are accelerated by nitrogen doping, and suppressed by defect annealing or addition of proteins or surfactants. It is proposed that dioxygen reacts with active sites on graphenic carbon surfaces to produce surface-bound oxygen intermediates that react heterogeneously with glutathione to restore the carbon surface and complete a catalytic cycle. The direct catalytic reaction between nanomaterial surfaces and antioxidants may contribute to oxidative stress pathways in nanotoxicity, and the dependence on surface area and structural defects suggest strategies for safe material design.


Assuntos
Antioxidantes/metabolismo , Grafite/química , Nanotubos de Carbono/química , Antioxidantes/química , Catalase/metabolismo , Catálise , Técnicas Eletroquímicas , Eletrodos , Dissulfeto de Glutationa/química , Nanotubos de Carbono/ultraestrutura , Nitrogênio/metabolismo , Oxirredução , Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Propriedades de Superfície
15.
J Neurosci Methods ; 201(1): 98-105, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21816174

RESUMO

Analysis of images from live-cell experiments is a central activity to studying the effects of stimulation on neuronal behavior. Image analysis techniques currently used to study these effects rely for the most part on the salience of the neuronal structures within the image. In both fluorescent and electron microscopy, neuronal structures are enhanced and therefore easy to distinguish in an image. Unlike images obtained via fluorescent or electron microscopy, however, images produced via transmission microscopy (e.g., bright field, phase contrast, DIC) are significantly more difficult to analyze because there is little contrast between the object-of-interest and the image background. This difficulty is amplified when a time-dependent sequence of images are to be analyzed, because of the corresponding large data sets. To address this problem, we introduce a novel approach to the analysis of images of live cells captured via transmission microscopy that takes advantage of commercially available software and the Fourier transform. Specifically, our approach utilizes several morphological functions in MATLAB to enhance the contrast of the cells with respect to the background, which is followed by 2-D Fourier analysis to generate a spectrum from which the orientation and alignment of cells and their processes can be measured. We show that this method can be used to simplify the interpretation of complex structure in images of live neurons obtained via transmission microscopy and consequently, discover trends in neurite development following different types of stimulation. This approach provides a consistent and reliable tool for analyzing changes in cell structure that occurs during live-cell experiments.


Assuntos
Análise de Fourier , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/tendências , Neurônios/fisiologia , Animais , Células Cultivadas , Estimulação Elétrica/métodos , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Laminina/administração & dosagem , Camundongos
16.
Arch Biochem Biophys ; 509(1): 33-43, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21338573

RESUMO

We examined the metabolism of two synthetic analogs of 1α,25-dihydroxyvitamin D3 (1), namely 1α,25-dihydroxy-16-ene-23-yne-vitamin D3 (2) and 1α,25-dihydroxy-16-ene-23-yne-26,27-dimethyl-vitamin D3 (4) using rat cytochrome P450 24A1 (CYP24A1) in a reconstituted system. We noted that 2 is metabolized into a single metabolite identified as C26-hydroxy-2 while 4 is metabolized into two metabolites, identified as C26-hydroxy-4 and C26a-hydroxy-4. The structural modification of adding methyl groups to the side chain of 1 as in 4 is also featured in another analog, 1α,25-dihydroxy-22,24-diene-24,26,27-trihomo-vitamin D3 (6). In a previous study, 6 was shown to be metabolized exactly like 4, however, the enzyme responsible for its metabolism was found to be not CYP24A1. To gain a better insight into the structural determinants for substrate recognition of different analogs, we performed an in silico docking analysis using the crystal structure of rat CYP24A1 that had been solved for the substrate-free open form. Whereas analogs 2 and 4 docked similar to 1, 6 showed altered interactions for both the A-ring and side chain, despite prototypical recognition of the CD-ring. These findings hint that CYP24A1 metabolizes selectively different analogs of 1, based on their ability to generate discrete recognition cues required to close the enzyme and trigger the catalytic mechanism.


Assuntos
Esteroide Hidroxilases/metabolismo , Vitamina D/análogos & derivados , Animais , Cromatografia Gasosa-Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Ratos , Esteroide Hidroxilases/química , Vitamina D/química , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase
17.
ACS Appl Mater Interfaces ; 3(1): 16-21, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21142128

RESUMO

Tailoring cell response on an electrode surface is essential in the application of neural interfaces. In this paper, a method of controlling neuron adhesion on the surface of an electrode was demonstrated using a conducting polymer composite as an electrode coating. The electrodeposited coating was functionalized further with biomolecules-of-interest (BOI), with their surface concentration controlled via repetition of carbodiimide chemistry. The result was an electrode surface that promoted localized adhesion of primary neurons, the density of which could be controlled quantitatively via changes in the number of layers of BOI added. Important to neural interfaces, it was found that additional layers of BOI caused an insignificant increase in the electrical impedance, especially when compared to the large drop in impedance upon coating of the electrode with the conducting polymer composite.


Assuntos
Materiais Biocompatíveis/química , Neurônios/química , Polímeros/química , Adesão Celular , Condutividade Elétrica , Impedância Elétrica , Polilisina/química , Propriedades de Superfície
18.
Anal Chem ; 79(19): 7301-7, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17727270

RESUMO

Microfluidic fuel cells exploit the lack of convective mixing at low Reynolds number to eliminate the need for a physical membrane to separate the fuel from the oxidant. Slow transport of reactants in combination with high catalytic surface-to-volume ratios often inhibit the efficiency of a microfluidic fuel cell. The performance of microfluidic devices that rely on surface electrochemical reactions is controlled by the interplay between reaction kinetics and the rate of mass transfer to the reactive surfaces. This paper presents theoretical and experimental work to describe the role of flow rate, microchannel geometry, and location of electrodes within a microfluidic fuel cell on its performance. A transport model, based on the convective-diffusive flux of reactants, is developed that describes the optimal conditions for maximizing both the average current density and the percentage of fuel utilized. The results show that the performance can be improved when the design of the device includes electrodes smaller than a critical length. The results of this study advance current approaches to the design of microfluidic fuel cells and other electrochemically-coupled microfluidic devices.


Assuntos
Microfluídica/instrumentação , Eletrodos , Modelos Teóricos
19.
Biomaterials ; 28(32): 4756-68, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17706277

RESUMO

The contribution of nanoscale surface roughness on the adsorption of one key cell adhesive protein, fibronectin, on carbon nanotube/poly(carbonate) urethane composites of different surface energies was evaluated. Systematic control of various surface energies by creating different nanosurface roughness features was performed by mixing two promising biomaterials: multi-wall carbon nanotubes and poly(carbonate) urethane. High ratios of carbon nanotubes coated with poly(carbonate) urethane provided for greater hydrophilic surfaces because of higher nanosurface roughness although pure carbon nanotube surfaces were extremely hydrophobic. Fabrication methods followed in this study generated various homogenous nanosurface roughness values (ranging from 2 to 20nm root mean square (RMS) AFM roughness). With the aid of such nanosurface roughness values in composites, a model was developed that linearly correlated nanosurface roughness and associated nanosurface energy to fibronectin adsorption. Specifically, independent contributions of surface chemistry (70%) and surface nano-roughness (30%) were found to mediate fibronectin adsorption. The results of the present study showed why carbon nanotube/poly(carbonate) urethane composites enhance cellular functions and tissue growth by delineating the importance of their physical nano-roughness on promoting the adsorption of a protein well known to be critical for mediating the adhesion of anchorage-dependent cells.


Assuntos
Fibronectinas/química , Fibronectinas/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Cimento de Policarboxilato/química , Uretana/química , Adsorção , Materiais Revestidos Biocompatíveis/química , Dureza , Teste de Materiais , Ligação Proteica , Propriedades de Superfície
20.
Arch Biochem Biophys ; 460(2): 254-61, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17196157

RESUMO

It is now well established that 1alpha,25(OH)2D3 is metabolized in its target tissues through the modifications of both side chain and A-ring. The C-24 oxidation pathway is the side chain modification pathway through which 1alpha,25(OH)2D3 is metabolized into calcitroic acid. The C-3 epimerization pathway is the A-ring modification pathway through which 1alpha,25(OH)2D3 is metabolized into 1alpha,25(OH)2-3-epi-D3. During the past two decades, a great number of vitamin D analogs were synthesized by altering the structure of both side chain and A-ring of 1alpha,25(OH)2D3 with the aim to generate novel vitamin D compounds that inhibit proliferation and induce differentiation of various types of normal and cancer cells without causing significant hypercalcemia. Previously, we used some of these analogs as molecular probes to examine how changes in 1alpha,25(OH)2D3 structure would affect its target tissue metabolism. Recently, several nonsteroidal analogs of 1alpha,25(OH)2D3 with unique biological activity profiles were synthesized. Two of the analogs, SL 117 and WU 515 lack the C-ring of the CD-ring skeleton of 1alpha,25(OH)2D3. SL 117 contains the same side chain as that of 1alpha,25(OH)2D3, while WU 515 contains an altered side chain with a 23-yne modification combined with hexafluorination at C-26 and C-27. Presently, it is unknown how the removal of C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 would affect its target tissue metabolism. In the present study, we compared the metabolic fate of SL 117 and WU 515 with that of 1alpha,25(OH)2D3 in both the isolated perfused rat kidney, which expresses only the C-24 oxidation pathway and rat osteosarcoma cells (UMR 106), which express both the C-24 oxidation and C-3 epimerization pathways. The results of our present study indicate that SL 117 is metabolized like 1alpha,25(OH)2D3, into polar metabolites via the C-24 oxidation pathway in both rat kidney and UMR 106 cells. As expected, WU 515 with altered side chain structure is not metabolized via the C-24 oxidation pathway. Unlike in rat kidney, both SL 117 and WU 515 are also metabolized into less polar metabolites in UMR 106 cells. These metabolites displayed GC and MS characteristics consistent with A-ring epimerization and were putatively assigned as C-3 epimers of SL 117 and WU 515. In summary, we report that removal of the C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 does not alter its target tissue metabolism significantly.


Assuntos
Calcitriol/análogos & derivados , Calcitriol/farmacocinética , Vitaminas/farmacocinética , Animais , Calcitriol/síntese química , Calcitriol/farmacologia , Proliferação de Células/efeitos dos fármacos , Hipercalcemia/tratamento farmacológico , Hipercalcemia/metabolismo , Rim/metabolismo , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Vitaminas/síntese química , Vitaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA