Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Biol Chem ; : 107891, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39447873

RESUMO

The endoplasmic reticulum (ER) is organized into ordered regions enriched in cholesterol and sphingomyelin, and disordered microdomains characterized by more fluidity. Rabbit CYP1A1 and CYP1A2 localize into disordered and ordered microdomains, respectively. Previously, a CYP1A2 chimera containing the first 109 amino acids of CYP1A1 showed altered microdomain localization. The goal of this study was to identify specific residues responsible for CYP1A microdomain localization. Thus, CYP1A2 chimeras containing substitutions from homologous regions of CYP1A1 were expressed in HEK 293T/17 cells, and the localization was examined after solubilization with Brij 98. A CYP1A2 mutant with the three amino acids from CYP1A1 (VAG) at positions 27-29 of CYP1A2 was generated that showed a distribution pattern similar to those of CYP1A1/1A2 chimeras containing both the first 109 amino acids and the first 31 amino acids of CYP1A1 followed by remaining amino acids of CYP1A2. Similarly, the reciprocal substitution of three amino acids from CYP1A2 (AVR) into CYP1A1 resulted in a partial redistribution of the chimera into ordered microdomains. Molecular dynamic simulations indicate that the positive charges of the CYP1A1 and CYP1A2 linker regions between the N-termini and catalytic domains resulted in different depths of immersion of the N-termini in the membrane. The overlap of the distribution of positively charged residues in CYP1A2 (AVR) and negatively charged phospholipids was higher in the ordered than disordered microdomain. These findings identify three residues in the CYP1A N-terminus as a novel microdomain-targeting motif of the P450s and provide a mechanistic explanation for the differential microdomain localization of CYP1A.

2.
Adv Mater ; : e2410652, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308225

RESUMO

The outbreak of antibiotic-resistant bacteria, or "superbugs", poses a global public health hazard due to their resilience against the most effective last-line antibiotics. Identifying potent antibacterial agents capable of evading bacterial resistance mechanisms represents the ultimate defense strategy. This study shows that -the otherwise essential micronutrient- manganese turns into a broad-spectrum potent antibiotic when coordinated with a carboxylated nitrogen-doped graphene. This antibiotic material (termed NGA-Mn) not only inhibits the growth of a wide spectrum of multidrug-resistant bacteria but also heals wounds infected by bacteria in vivo and, most importantly, effectively evades bacterial resistance development. NGA-Mn exhibits up to 25-fold higher cytocompatibility to human cells than its minimum bacterial inhibitory concentration, demonstrating its potential as a next-generation antibacterial agent. Experimental findings suggest that NGA-Mn acts on the outer side of the bacterial cell membrane via a multimolecular collective binding, blocking vital functions in both Gram-positive and Gram-negative bacteria. The results underscore the potential of single-atom engineering toward potent antibiotics, offering simultaneously a long-sought solution for evading drug resistance development while being cytocompatible to human cells.

3.
J Biomol Struct Dyn ; : 1-11, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487842

RESUMO

Delivery of RNA into cells using lipid nanoparticles (LNPs) has been a significant breakthrough in RNA-based medicine, with clinical applicability expanded through the use of ionizable lipids (ILs). These unique lipids can alter their charge state in response to pH changes, which is crucial for pH-triggered endosomal escape and effective lipid-mediated RNA delivery. In this study, we conducted a comprehensive set of molecular dynamics (MD) simulations to investigate interactions between IL-containing lipid nanodroplets (LNDs) and cell membrane models. Using an atomistic resolution model, we investigated the merging process of LNDs with cell membrane models under neutral conditions relevant to an intercellular environment and acidic pH conditions found in late endosomes. Our observations revealed that at neutral pH, LNDs merged with lipid membranes while preserving the bilayer structure. Under acidic conditions, the LNDs remained attached to the bilayer without fusing into the membranes. Importantly, the presence of ILs did not disrupt the original biomembrane structure during the simulation period. The MD simulations provided valuable atomistic insights into the mechanism of interaction between IL-containing nanodroplets and biomembranes, which could aid the rational design of ILs to develop more efficient LNPs for RNA therapies.Communicated by Ramaswamy H. Sarma.

4.
J Am Chem Soc ; 145(32): 17805-17818, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37531225

RESUMO

Self-assembled nanotubes exhibit impressive biological functions that have always inspired supramolecular scientists in their efforts to develop strategies to build such structures from small molecules through a bottom-up approach. One of these strategies employs molecules endowed with self-recognizing motifs at the edges, which can undergo either cyclization-stacking or folding-polymerization processes that lead to tubular architectures. Which of these self-assembly pathways is ultimately selected by these molecules is, however, often difficult to predict and even to evaluate experimentally. We show here a unique example of two structurally related molecules substituted with complementary nucleobases at the edges (i.e., G:C and A:U) for which the supramolecular pathway taken is determined by chelate cooperativity, that is, by their propensity to assemble in specific cyclic structures through Watson-Crick pairing. Because of chelate cooperativities that differ in several orders of magnitude, these molecules exhibit distinct supramolecular scenarios prior to their polymerization that generate self-assembled nanotubes with different internal monomer arrangements, either stacked or coiled, which lead at the same time to opposite helicities and chiroptical properties.

5.
J Phys Chem B ; 127(5): 1158-1166, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36602349

RESUMO

RNA-based therapies have shown promise in a wide range of applications, from cancer therapy, treatment of inherited diseases to vaccination. Encapsulation of RNA into ionizable lipid (IL) containing lipid nanoparticles (LNPs) has enabled its safe and targeted delivery. We present here the simulations of the self-assembly process of pH-sensitive RNA-carrying LNPs and their internal morphology. At low pH, the simulations confirm a lipid core encapsulating RNA in the hexagonal phase. Our all-atom and coarse-grained simulations show that an RNA molecule inside an LNP is protected from interactions with ions by being enveloped in the charged ILs. At neutral pH, representing the environment after LNP administration into human tissues, LNPs expelled most of the encapsulated RNA and water and formed separate bulk IL-rich and ordered the helper-lipid-rich phase. Helper lipids arranged themselves to be in contact with RNA or water. The presented models provide atomistic understanding of the LNP structure and open a way to investigate them in silico, varying the LNP composition or interacting with other biostructures aiming at increasing the efficiency of RNA-based medicine.


Assuntos
Lipídeos , Nanopartículas , Humanos , Lipídeos/química , Lipossomos , RNA Interferente Pequeno/química , Nanopartículas/química
6.
J Phys Chem B ; 127(1): 212-227, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36563093

RESUMO

The embedding of caffeate methyl ester, the flavonoids luteolin and quercetin, and the o-phenanthroline and neocuproine in a liquid disordered lipid bilayer has been studied through extensive atomistic calculations. The location and the orientation of these bio-active antioxidants are explained and analyzed. While the two phenanthrolines strongly associate with the lipid tail region, the other three compounds are rather found among the head groups. The simulations showcase conformational changes of the flavonoids. Through the use of a hybrid quantum mechanics-molecular mechanics scheme and supported by a profound benchmarking of the electronic excited-state method for these compounds, the influence of the anisotropic environment on the compounds' optical properties is analyzed. Influences of surrounding water molecules and of the polar parts of the lipids on the transition dipole moments and excited-state dipole moments are weighted with respect to a change in conformation. The current study highlights the importance of the mapping of molecular interactions in model membranes and pinpoints properties, which can be biomedically used to discriminate and detect different lipid environments.


Assuntos
Corantes , Fenantrolinas , Bicamadas Lipídicas/química , Antioxidantes , Flavonoides
7.
Chempluschem ; 88(1): e202200262, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173143

RESUMO

Biomimetic chiral optoelectronic materials can be utilized in electronic devices, biosensors and artificial enzymes. Herein, this work reports the chiro-optical properties and architectural arrangement of optoelectronic materials generated from self-assembly of initially nonchiral oligothiophene-porphyrin derivatives and random coil synthetic peptides. The photo-physical- and structural properties of the materials were assessed by absorption-, fluorescence- and circular dichroism spectroscopy, as well as dynamic light scattering, scanning electron microscopy and theoretical calculations. The materials display a three-dimensional ordered helical structure and optical activity that are observed due to an induced chirality of the optoelectronic element upon interaction with the peptide. Both these properties are influenced by the chemical composition of the oligothiophene-porphyrin derivative, as well as the peptide sequence. We foresee that our findings will aid in developing self-assembled optoelectronic materials with dynamic architectonical accuracies, as well as offer the possibility to generate the next generation of materials for a variety of bioelectronic applications.


Assuntos
Materiais Biomiméticos , Porfirinas , Porfirinas/química , Peptídeos/química , Sequência de Aminoácidos , Microscopia Eletrônica de Varredura
8.
Small ; 18(49): e2204408, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36216589

RESUMO

Utilization of nucleic acids (NAs) in nanotechnologies and nanotechnology-related applications is a growing field with broad application potential, ranging from biosensing up to targeted cell delivery. Computer simulations are useful techniques that can aid design and speed up development in this field. This review focuses on computer simulations of hybrid nanomaterials composed of NAs and other components. Current state-of-the-art molecular dynamics simulations, empirical force fields (FFs), and coarse-grained approaches for the description of deoxyribonucleic acid and ribonucleic acid are critically discussed. Challenges in combining biomacromolecular and nanomaterial FFs are emphasized. Recent applications of simulations for modeling NAs and their interactions with nano- and biomaterials are overviewed in the fields of sensing applications, targeted delivery, and NA templated materials. Future perspectives of development are also highlighted.


Assuntos
Ácidos Nucleicos , Nanotecnologia , Computadores
9.
J Phys Chem Lett ; 12(45): 11199-11205, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34761943

RESUMO

Recent advances in RNA-based medicine have provided new opportunities for the global current challenge, i.e., the COVID-19 pandemic. Novel vaccines are based on a messenger RNA (mRNA) motif with a lipid nanoparticle (LNP) vector, consisting of high content of unique pH-sensitive ionizable lipids (ILs). Here we provide molecular insights into the role of the ILs and lipid mixtures used in current mRNA vaccines. We observed that the lipid mixtures adopted a nonlamellar organization, with ILs separating into a very disordered, pH-sensitive phase. We describe structural differences of the two ILs leading to their different congregation, with implications for the vaccine stability. Finally, as RNA interacts preferentially with IL-rich phases located at the regions with high curvature of lipid phase, local changes in RNA flexibility and base pairing are induced by lipids. A proper atomistic understanding of RNA-lipid interactions may enable rational tailoring of LNP composition for efficient RNA delivery.


Assuntos
Vacinas contra COVID-19/química , Lipídeos/química , RNA Mensageiro/química , Humanos , Bicamadas Lipídicas/química , Modelos Moleculares , Simulação de Dinâmica Molecular
10.
ACS Nano ; 15(4): 6582-6593, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33724779

RESUMO

Highly fluorescent carbon nanoparticles called carbon dots (CDs) have been the focus of intense research due to their simple chemical synthesis, nontoxic nature, and broad application potential including optoelectronics, photocatalysis, biomedicine, and energy-related technologies. Although a detailed elucidation of the mechanism of their photoluminescence (PL) remains an unmet challenge, the CDs exhibit robust, reproducible, and environment-sensitive PL signals, enabling us to monitor selected chemical phenomena including phase transitions or detection of ultralow concentrations of molecular species in solution. Herein, we report the PL turn-off/on behavior of aqueous CDs allowing the reversible monitoring of the water-ice phase transition. The bright PL attributable to molecular fluorophores present on the CD surface was quenched by changing the liquid aqueous environment to solid phase (ice). Based on light-induced electron paramagnetic resonance (LEPR) measurements and density functional theory (DFT) calculations, the proposed kinetic model assuming the presence of charge-separated trap states rationalized the observed sensitivity of PL lifetimes to the environment. Importantly, the PL quenching induced by freezing could be suppressed by adding a small amount of alcohols. This was attributed to a high tendency of alcohol to increase its concentration at the CD/solvent interface, as revealed by all-atom molecular dynamics simulations. Based on this behavior, a fluorescence "turn-on" alcohol sensor for exhaled breath condensate (EBC) analysis has been developed. This provided an easy method to detect alcohols among other common interferents in EBC with a low detection limit (100 ppm), which has a potential to become an inexpensive and noninvasive clinically useful diagnostic tool for early stage lung cancer screening.

11.
Molecules ; 25(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957614

RESUMO

The fluorescent molecule diphenylhexatriene (DPH) has been often used in combination with fluorescence anisotropy measurements, yet little is known regarding the non-linear optical properties. In the current work, we focus on them and extend the application to fluorescence, while paying attention to the conformational versatility of DPH when it is embedded in different membrane phases. Extensive hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the influence of the phase- and temperature-dependent lipid environment on the probe. Already, the transition dipole moments and one-photon absorption spectra obtained in the liquid ordered mixture of sphingomyelin (SM)-cholesterol (Chol) (2:1) differ largely from the ones calculated in the liquid disordered DOPC and solid gel DPPC membranes. Throughout the work, the molecular conformation in SM:Chol is found to differ from the other environments. The two-photon absorption spectra and the ones obtained by hyper-Rayleigh scattering depend strongly on the environment. Finally, a stringent comparison of the fluorescence anisotropy decay and the fluorescence lifetime confirm the use of DPH to gain information upon the surrounding lipids and lipid phases. DPH might thus open the possibility to detect and analyze different biological environments based on its absorption and emission properties.


Assuntos
Difenilexatrieno/química , Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Colesterol/química , Polarização de Fluorescência , Conformação Molecular , Simulação de Dinâmica Molecular , Transição de Fase , Esfingomielinas/química , Relação Estrutura-Atividade , Temperatura de Transição
12.
J Phys Chem Lett ; 11(19): 8252-8258, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805121

RESUMO

Various molecular fluorophores have been identified to be present during carbon-dot (C-dot) syntheses. However, the organization of such fluorophores in C-dots is still unknown. We study the self-assembly of 5-oxo-1,2,3,5-tetrahydroimidazo-[1,2-α]-pyridine-7-carboxylic acid (IPCA), a molecular fluorophore present during the synthesis of C-dots from citric acid and ethylenediamine. Both forms of IPCA (neutral and anionic) show a tendency to self-assemble into stacked systems, forming seeds of C-dots during their synthesis. IPCA also interacts with graphitic C-dot building blocks, fragments easily, and incorporates into their structures via π-π stacking. Both IPCA forms are able to create adlayers internally stabilized by an extensive hydrogen bonding network, with an arrangement of layers similar to that in ordinary graphitic C-dots. The results show the tendency of molecular fluorophores to form organized stacked seeds of C-dots and incorporate into C-dot structures. Such noncovalent structures can be further covalently interlinked via the carbonization process during C-dot growth.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117329, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31326855

RESUMO

Visualization of membrane domains like lipid rafts in natural or artificial membranes is a crucial task for cell biology. For this purpose, fluorescence microscopy is often used. Since fluorescing probes in lipid membranes partition specifically in e.g. local liquid disordered or liquid ordered environments, the consequent changes in their orientation and location are both theoretically and experimentally of interest. Here we focused on a liquid disordered membrane phase and performed molecular dynamics (MD) simulations of the indocarbocyanine DiD probes by varying the length of the attached alkyl tails and also the length of the cyanine backbone. From the probed compounds in a DOPC lipid bilayer at ambient temperature, a varying orientation of the transition dipole moment was observed, which is crucial for fluorescence microscopy and which, through photoselection, was found to be surprisingly more effective for asymmetric probes than for the symmetric ones. Furthermore, we observed that the orientation of the probes was dependent on the tail length; with the methyls or propyls attached, DiD oriented with its tails facing the water, contrary to the ones with longer tails. With advanced hybrid QM/MM calculations we show that the different local environment for differently oriented probes affected the one-photon absorption spectra, that was blue-shifted for the short-tailed DiD with respect to the DiDs with longer tails. We show here that the presented probes can be successfully used for fluorescence microscopy and we believe that the described properties bring further insight for the experimental use of these probes.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Espectrometria de Fluorescência
14.
Phys Chem Chem Phys ; 21(14): 7594-7604, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30900721

RESUMO

Characterization of the membrane phases is a crucial task in cell biology. Cells differ in composition of the lipids and consequently in adopted phases. The phases can be discriminated based upon lipid ordering and molecular diffusion and their identification could be used for characterization of cell membranes. Here we used molecular dynamics (MD) simulations to study the behavior of the fluorescent reporter molecule diphenylhexatriene (DPH) in different lipid phases - liquid disordered (Ld), liquid ordered (Lo), and solid ordered (So) composed of phosphatidylcholines (Ld and So) or a sphingomyelin/cholesterol (SM/Chol) mixture (Lo). To the best of our knowledge, this is the first simulation of DPH in Lo SM/Chol and So DPPC membranes. For the considered membrane compositions DPH is mostly oriented parallel to lipid tails. In the Lo phase we observed a significant fraction of DPH positioned in between membrane leaflets, which agrees with experimental findings, but which has not been observed in previous MD simulations of DPH in phosphatidylcholine membranes. Further, we calculated rotational autocorrelation functions (ROTACF) from our MD simulations in order to model the time-resolved fluorescence anisotropy decay. We observed that order parameters P2 and P4 are sufficient to fully describe the orientation distribution of DPH. We analyzed the ROTACFs by a so-called general model for the time-resolved fluorescence anisotropy [W. van der Meer et al., Biophys. J., 1984, 46, 515] and observed an overestimation of P4. We suggest a rescaling of the recovered P4 yielding an orientation distribution of DPH close to the one observed in our MD simulations.


Assuntos
Difenilexatrieno/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Colesterol/química , Difenilexatrieno/química , Polarização de Fluorescência , Bicamadas Lipídicas/química , Modelos Teóricos , Fosfatidilcolinas/química , Esfingomielinas/química
15.
Molecules ; 24(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586949

RESUMO

Silymarin is a well-known standardized extract from the seeds of milk thistle (Silybum marianum L., Asteraceae) with a pleiotropic effect on human health, including skin anticancer potential. Detailed characterization of flavonolignans properties affecting interactions with human skin was of interest. The partition coefficients log Pow of main constitutive flavonolignans, taxifolin and their respective dehydro derivatives were determined by a High Performance Liquid Chromatography (HPLC) method and by mathematical (in silico) approaches in n-octanol/water and model lipid membranes. These parameters were compared with human skin intake ex vivo. The experimental log Pow values for individual diastereomers were estimated for the first time. The replacement of n-octanol with model lipid membranes in the theoretical lipophilicity estimation improved the prediction strength. During transdermal transport, all the studied compounds permeated the human skin ex vivo; none of them reached the acceptor liquid. Both experimental/theoretical tools allowed the studied polyphenols to be divided into two groups: low (taxifolin, silychristin, silydianin) vs. high (silybin, dehydrosilybin, isosilybin) lipophilicity and skin intake. In silico predictions can be usefully applied for estimating general lipophilicity trends, such as skin penetration or accumulation predictions. However, the theoretical models cannot yet provide the dermal delivery differences of compounds with very similar physico-chemical properties; e.g., between diastereomers.


Assuntos
Derme/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Polifenóis/administração & dosagem , Polifenóis/farmacologia , Silybum marianum/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Permeabilidade , Polifenóis/química , Termodinâmica
16.
J Inorg Biochem ; 183: 117-136, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29653695

RESUMO

Mammalian cytochromes P450 are an important class of enzymes involved in the biotransformation of many endo- and exogenous compounds. Cytochrome P450 isoforms are attached to the membrane of the endoplasmic reticulum or mitochondria, and their catalytic domains move along the membrane surface while being partially immersed in the membrane environment. Their active sites are connected to both the membrane and cytosolic environments via a complex network of access channels. Consequently, they can accept substrates from both environments. The membrane also supports the interactions of cytochromes P450 with their redox partners. In this review, we provide an overview of current knowledge of the structure, flexibility, and interactions with substrates and redox partners of cytochrome P450 on membranes, amalgamating information derived from both experiments and simulations.


Assuntos
Membrana Celular/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Humanos , Oxirredução , Ligação Proteica
17.
J Chem Theory Comput ; 14(4): 2076-2083, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29499118

RESUMO

Carbon dots (CDs), one of the youngest members of the carbon nanostructure family, are now widely experimentally studied for their tunable fluorescence properties, bleaching resistance, and biocompatibility. Their interaction with biomolecular systems has also been explored experimentally. However, many atomistic details still remain unresolved. Molecular dynamics (MD) simulations enabling atomistic and femtosecond resolutions simultaneously are a well-established tool of computational chemistry which can provide useful insights into investigated systems. Here we present a full procedure for performing MD simulations of CDs. We developed a builder for generating CDs of a desired size and with various oxygen-containing surface functional groups. Further, we analyzed the behavior of various CDs differing in size, surface functional groups, and degrees of functionalization by MD simulations. These simulations showed that surface functionalized CDs are stable in a water environment through the formation of an extensive hydrogen bonding network. We also analyzed the internal dynamics of individual layers of CDs and evaluated the role of surface functional groups on CD stability. We observed that carboxyl groups interconnected the neighboring layers and decreased the rate of internal rotations. Further, we monitored changes in the CD shape caused by an excess of charged carboxyl groups or carbonyl groups. In addition to simulations in water, we analyzed the behavior of CDs in the organic solvent DMF, which decreased the stability of pure CDs but increased the level of interlayer hydrogen bonding. We believe that the developed protocol, builder, and parameters will facilitate future studies addressing various aspects of structural features of CDs and nanocomposites containing CDs.

18.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2852-2860, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28780123

RESUMO

BACKGROUND: Cytochromes P450 are major drug-metabolizing enzymes involved in the biotransformation of diverse xenobiotics and endogenous chemicals. Persistent organic pollutants (POPs) are toxic hydrophobic compounds that cause serious environmental problems because of their poor degradability. This calls for rational design of enzymes capable of catalyzing their biotransformation. Cytochrome P450 1A1 isoforms catalyze the biotransformation of some POPs, and constitute good starting points for the design of biocatalysts with tailored substrate specificity. METHODS: We rationalized the activities of wild type and mutant forms of rat cytochrome P450 1A1 towards 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) and 3,3',4,4'-tetrachlorobiphenyl (PCB77) using experiments and molecular dynamics simulations. RESULTS: We showed that the enhanced activity of the CYP1A1 mutant towards TCDD was due to more efficient binding of the substrate in the active site even though the mutated site was over 2.5nm away from the catalytic center. Moreover, this mutation reduced activity towards PCB77. GENERAL SIGNIFICANCE: Amino acids that affect substrate access channels can be viable targets for rational enzyme design even if they are located far from the catalytic site.


Assuntos
Catálise , Citocromo P-450 CYP1A1/genética , Poluentes Ambientais/toxicidade , Inativação Metabólica/genética , Animais , Biotransformação/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Citocromo P-450 CYP1A1/química , Adutos de DNA/efeitos dos fármacos , Poluentes Ambientais/química , Humanos , Inativação Metabólica/efeitos dos fármacos , Mutação , Bifenilos Policlorados/química , Bifenilos Policlorados/toxicidade , Dibenzodioxinas Policloradas/química , Dibenzodioxinas Policloradas/toxicidade , Ratos , Especificidade por Substrato
19.
J Phys Chem B ; 120(43): 11205-11213, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27723344

RESUMO

Microsomal cytochrome P450 enzymes (CYPs) are membrane-attached enzymes that play indispensable roles in biotransformations of numerous endogenous and exogenous compounds. Although recent progress in experiments and simulations has allowed many important features of CYP-membrane interactions to be deciphered, many other aspects remain underexplored. Using microsecond-long molecular dynamics simulations, we analyzed interaction of CYP3A4 with bilayers composed of lipids differing in their polar head groups, i.e., phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. In the negatively charged lipids, CYP3A4 was immersed more deeply and was more inclined toward the membrane because of favorable electrostatic and hydrogen bonding interactions between the CYP catalytic domain and lipid polar head groups. We showed that electrostatics significantly contributes to positioning and orientation of CYP on the membrane and might contribute to the experimentally observed preferences of individual CYP isoforms to distribute in (dis)ordered membrane microdomains.


Assuntos
Citocromo P-450 CYP3A/química , Bicamadas Lipídicas/química , Lipídeos/química , Animais , Citocromo P-450 CYP3A/metabolismo , Humanos , Ligação de Hidrogênio , Bicamadas Lipídicas/metabolismo , Microssomos/química , Microssomos/metabolismo , Simulação de Dinâmica Molecular , Coelhos , Eletricidade Estática
20.
Pharmacol Res ; 111: 471-486, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27378566

RESUMO

Over the past decade, molecular dynamics (MD) simulations have become particularly powerful to rationalize drug insertion and partitioning in lipid bilayers. MD simulations efficiently support experimental evidences, with a comprehensive understanding of molecular interactions driving insertion and crossing. Prediction of drug partitioning is discussed with respect to drug families (anesthetics; ß-blockers; non-steroidal anti-inflammatory drugs; antioxidants; antiviral drugs; antimicrobial peptides). To accurately evaluate passive permeation coefficients turned out to be a complex theoretical challenge; however the recent methodological developments based on biased MD simulations are particularly promising. Particular attention is paid to membrane composition (e.g., presence of cholesterol), which influences drug partitioning and permeation. Recent studies concerning in silico models of membrane proteins involved in drug transport (influx and efflux) are also reported here. These studies have allowed gaining insight in drug efflux by, e.g., ABC transporters at an atomic resolution, explicitly accounting for the mandatory forces induced by the surrounded lipid bilayer. Large-scale conformational changes were thoroughly analyzed.


Assuntos
Membrana Celular/metabolismo , Preparações Farmacêuticas/metabolismo , Transporte Biológico , Simulação por Computador , Citoplasma/metabolismo , Resistência a Medicamentos , Humanos , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA