Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Basic Res Cardiol ; 118(1): 21, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227592

RESUMO

Iron overload associated cardiac dysfunction remains a significant clinical challenge whose underlying mechanism(s) have yet to be defined. We aim to evaluate the involvement of the mitochondrial Ca2+ uniporter (MCU) in cardiac dysfunction and determine its role in the occurrence of ferroptosis. Iron overload was established in control (MCUfl/fl) and conditional MCU knockout (MCUfl/fl-MCM) mice. LV function was reduced by chronic iron loading in MCUfl/fl mice, but not in MCUfl/fl-MCM mice. The level of mitochondrial iron and reactive oxygen species were increased and mitochondrial membrane potential and spare respiratory capacity (SRC) were reduced in MCUfl/fl cardiomyocytes, but not in MCUfl/fl-MCM cardiomyocytes. After iron loading, lipid oxidation levels were increased in MCUfl/fl, but not in MCUfl/fl-MCM hearts. Ferrostatin-1, a selective ferroptosis inhibitor, reduced lipid peroxidation and maintained LV function in vivo after chronic iron treatment in MCUfl/fl hearts. Isolated cardiomyocytes from MCUfl/fl mice demonstrated ferroptosis after acute iron treatment. Moreover, Ca2+ transient amplitude and cell contractility were both significantly reduced in isolated cardiomyocytes from chronically Fe treated MCUfl/fl hearts. However, ferroptosis was not induced in cardiomyocytes from MCUfl/fl-MCM hearts nor was there a reduction in Ca2+ transient amplitude or cardiomyocyte contractility. We conclude that mitochondrial iron uptake is dependent on MCU, which plays an essential role in causing mitochondrial dysfunction and ferroptosis under iron overload conditions in the heart. Cardiac-specific deficiency of MCU prevents the development of ferroptosis and iron overload-induced cardiac dysfunction.


Assuntos
Cardiopatias , Sobrecarga de Ferro , Camundongos , Animais , Miócitos Cardíacos , Sobrecarga de Ferro/complicações , Ferro , Cálcio
2.
Cells ; 11(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36078133

RESUMO

Ferroptosis has recently been demonstrated to be a novel regulated non-apoptotic cell death characterized by iron-dependence and the accumulation of lipid peroxidation that results in membrane damage. Excessive iron induces ferroptosis by promoting the generation of both soluble and lipid ROS via an iron-dependent Fenton reaction and lipoxygenase (LOX) enzyme activity. Cytosolic glutathione peroxidase 4 (cGPX4) pairing with ferroptosis suppressor protein 1 (FSP1) and mitochondrial glutathione peroxidase 4 (mGPX4) pairing with dihydroorotate dehydrogenase (DHODH) serve as two separate defense systems to detoxify lipid peroxidation in the cytoplasmic as well as the mitochondrial membrane, thereby defending against ferroptosis in cells under normal conditions. However, disruption of these defense systems may cause ferroptosis. Emerging evidence has revealed that ferroptosis plays an essential role in the development of diverse cardiovascular diseases (CVDs), such as hemochromatosis-associated cardiomyopathy, doxorubicin-induced cardiotoxicity, ischemia/reperfusion (I/R) injury, heart failure (HF), atherosclerosis, and COVID-19-related arrhythmias. Iron chelators, antioxidants, ferroptosis inhibitors, and genetic manipulations may alleviate the aforementioned CVDs by blocking ferroptosis pathways. In conclusion, ferroptosis plays a critical role in the pathogenesis of various CVDs and suppression of cardiac ferroptosis is expected to become a potential therapeutic option. Here, we provide a comprehensive review on the molecular mechanisms involved in ferroptosis and its implications in cardiovascular disease.


Assuntos
COVID-19 , Doenças Cardiovasculares , Ferroptose , Traumatismo por Reperfusão , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos
3.
Stem Cell Rev Rep ; 18(8): 3066-3082, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35908144

RESUMO

Preeclampsia (PE) is a pregnancy-specific disease, occurring in ~ 2-10% of all pregnancies. PE is associated with increased maternal and perinatal morbidity and mortality, hypertension, proteinuria, disrupted artery remodeling, placental ischemia and reperfusion, and inflammation. The mechanism of PE pathogenesis remains unresolved explaining limited treatment. Aspirin is used to reduce the risk of developing PE. This study investigated aspirin's effect on PE-derived placenta mesenchymal stem cells (P-MSCs). P-MSCs from chorionic membrane (CM), chorionic villi, membranes from the maternal and amniotic regions, and umbilical cord were similar in morphology, phenotype and multipotency. Since CM-derived P-MSCs could undergo long-term passages, the experimental studies were conducted with this source of P-MSCs. Aspirin (1 mM) induced significant functional and transcriptomic changes in PE-derived P-MSCs, similar to healthy P-MSCs. These include cell cycle quiescence, improved angiogenic pathways, and immune suppressor potential. The latter indicated that aspirin could induce an indirect program to mitigate PE-associated inflammation. As a mediator of activating the DNA repair program, aspirin increased p53, and upregulated genes within the basic excision repair pathway. The robust ability for P-MSCs to maintain its function with high dose aspirin contrasted bone marrow (M) MSCs, which differentiated with eventual senescence/aging with 100 fold less aspirin. This difference cautions how data from other MSC sources are extrapolated to evaluate PE pathogenesis. Dysfunction among P-MSCs in PE involves a network of multiple pathways that can be restored to an almost healthy functional P-MSC. The findings could lead to targeted treatment for PE.


Assuntos
Células-Tronco Mesenquimais , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Placenta , Transcriptoma/genética , Aspirina/farmacologia , Aspirina/metabolismo , Células-Tronco , Inflamação/metabolismo
4.
Adv Exp Med Biol ; 1350: 67-89, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888844

RESUMO

The bone marrow (BM) is a complex organ that sustains hematopoiesis via mechanisms involving the microenvironment. The microenvironment includes several cell types, neurotransmitters from innervated fibers, growth factors, extracellular matrix proteins, and extracellular vesicles. The main function of the BM is to regulate hematopoietic function to sustain the production of blood and immune cells. However, the BM microenvironment can also accommodate the survival of malignant cells. A major mechanism by which the cancer cells communicate with cells of the BM microenvironment is through the exchange of exosomes, a subset of extracellular vesicles that deliver molecular signals bidirectionally between malignant and healthy cells. The field of exosomes is an active area of investigation since an understanding of how the exosomal packaging, cargo, and production can be leveraged therapeutically to deter cancer progression and sensitize malignant cells to other therapies. Altogether, this chapter discusses the crucial role of exosomes in the development and progression of BM-associated cancers, such as hematologic malignancies and marrow-metastatic breast cancer. Exosome-based therapeutic strategies and their limitations are also considered.


Assuntos
Exossomos , Vesículas Extracelulares , Medula Óssea , Comunicação Celular , Microambiente Tumoral
5.
Aging (Albany NY) ; 13(21): 23981-24016, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762598

RESUMO

This study addresses the potential to reverse age-associated morbidity by establishing methods to restore the aged hematopoietic system. Parabiotic animal models indicated that young secretome could restore aged tissues, leading us to establish a heterochronic transwell system with aged mobilized peripheral blood (MPB), co-cultured with young MPB or umbilical cord blood (UCB) cells. Functional studies and omics approaches indicate that the miRNA cargo of microvesicles (MVs) restores the aged hematopoietic system. The in vitro findings were validated in immune deficient (NSG) mice carrying an aged hematopoietic system, improving aged hallmarks such as increased lymphoid:myeloid ratio, decreased inflammation and cellular senescence. Elevated MYC and E2F pathways, and decreased p53 were key to hematopoietic restoration. These processes require four restorative miRs that target the genes for transcription/differentiation, namely PAX and phosphatase PPMIF. These miRs when introduced in aged cells were sufficient to restore the aged hematopoietic system in NSG mice. The aged MPBs were the drivers of their own restoration, as evidenced by the changes from distinct baseline miR profiles in MPBs and UCB to comparable expressions after exposure to aged MPBs. Restorative natural killer cells eliminated dormant breast cancer cells in vivo, indicating the broad relevance of this cellular paradigm - preventing and reversing age-associated disorders such as clearance of early malignancies and enhanced responses to vaccine and infection.


Assuntos
Células da Medula Óssea , Micropartículas Derivadas de Células , Senescência Celular/fisiologia , Hematopoese/fisiologia , Adulto , Idoso , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/fisiologia , Feminino , Sangue Fetal/citologia , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Secretoma , Adulto Jovem
6.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34078741

RESUMO

The challenge for treating breast cancer (BC) is partly due to long-term dormancy driven by cancer stem cells (CSCs) capable of evading immune response and resist chemotherapy. BC cells show preference for the BM, resulting in poor prognosis. CSCs use connexin 43 (Cx43) to form gap junctional intercellular communication with BM niche cells, fibroblasts, and mesenchymal stem cells (MSCs). However, Cx43 is an unlikely target to reverse BC dormancy because of its role as a hematopoietic regulator. We found N-cadherin (CDH2) and its associated pathways as potential drug targets. CDH2, highly expressed in CSCs, interacts intracellularly with Cx43, colocalizes with Cx43 in BC cells within BM biopsies of patients, and is required for Cx43-mediated gap junctional intercellular communication with BM niche cells. Notably, CDH2 and anti-apoptotic pathways maintained BC dormancy. We thereby propose these pathways as potential pharmacological targets to prevent dormancy and chemosensitize resistant CSCs.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Conexina 43/metabolismo , Antígenos CD/genética , Medula Óssea/metabolismo , Caderinas/genética , Caderinas/fisiologia , Conexina 43/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/metabolismo , Evasão Tumoral/fisiologia
7.
Cancer Res ; 81(6): 1567-1582, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33500249

RESUMO

In the bone marrow (BM), breast cancer cells (BCC) can survive in dormancy for decades as cancer stem cells (CSC), resurging as tertiary metastasis. The endosteal region where BCCs exist as CSCs poses a challenge to target them, mostly due to the coexistence of endogenous hematopoietic stem cells. This study addresses the early period of dormancy when BCCs enter BM at the perivascular region to begin the transition into CSCs, which we propose as the final step in dormancy. A two-step process comprises the Wnt-ß-catenin pathway mediating BCC dedifferentiation into CSCs at the BM perivascular niche. At this site, BCCs responded to two types of mesenchymal stem cell (MSC)-released extracellular vesicles (EV) that may include exosomes. Early released EVs began the transition into cycling quiescence, DNA repair, and reorganization into distinct BCC subsets. After contact with breast cancer, the content of EVs changed (primed) to complete dedifferentiation into a more homogeneous population with CSC properties. BCC progenitors (Oct4alo), which are distant from CSCs in a hierarchical stratification, were sensitive to MSC EVs. Despite CSC function, Oct4alo BCCs expressed multipotent pathways similar to CSCs. Oct4alo BCCs dedifferentiated and colocalized with MSCs (murine and human BM) in vivo. Overall, these findings elucidate a mechanism of early dormancy at the BM perivascular region and provide evidence of epigenome reorganization as a potential new therapy for breast cancer. SIGNIFICANCE: These findings describe how the initial process of dormancy and dedifferentiation of breast cancer cells at the bone marrow perivascular niche requires mesenchymal stem cell-derived exosomes, indicating a potential target for therapeutic intervention.


Assuntos
Medula Óssea/patologia , Neoplasias da Mama/patologia , Desdiferenciação Celular , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Adolescente , Adulto , Animais , Biópsia , Reparo do DNA , Exossomos/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt , Adulto Jovem
8.
Front Pharmacol ; 10: 134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853911

RESUMO

Glioblastoma multiforme (GBM) is a fatal malignancy of the central nervous system, commonly associated with chemoresistance. The alkylating agent Temozolomide (TMZ) is the front-line chemotherapeutic agent and has undergone intense studies on resistance. These studies reported on mismatch repair gene upregulation, ABC-targeted drug efflux, and cell cycle alterations. The mechanism by which TMZ induces cell cycle arrest has not been well-established. TMZ-resistant GBM cells have been linked to microRNA (miRNA) and exosomes. A cell cycle miRNA array identified distinct miRNAs only in exosomes from TMZ-resistant GBM cell lines and primary spheres. We narrowed the miRs to miR-93 and -193 and showed in computational analyses that they could target Cyclin D1. Since Cyclin D1 is a major regulator of cell cycle progression, we performed cause-effect studies and showed a blunting effects of miR-93 and -193 in Cyclin D1 expression. These two miRs also decreased cell cycling quiescence and induced resistance to TMZ. Taken together, our data provide a mechanism by which GBM cells can exhibit TMZ-induced resistance through miRNA targeting of Cyclin D1. The data provide a number of therapeutic approaches to reverse chemoresistance at the miRNA, exosomal and cell cycle points.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA