Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(3): 1357-1367, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38293689

RESUMO

The pressure-induced structural evolution of Ca2SnO4, Sr2SnO4, and Zn2SnO4 has been characterized by powder X-ray diffraction up to 20 GPa using the ALBA synchrotron radiation source and density functional theory calculations. No phase transition was observed in Ca2SnO4 and Zn2SnO4 in the investigated pressure range. The observation in Zn2SnO4 solves contradictions existing in the literature. In contrast, a phase transition was observed in Sr2SnO4 at a pressure of 9.09 GPa. The transition was characterized as from the ambient-condition tetragonal polymorph (space group I4/mmm) to the low-temperature tetragonal polymorph (space group P42/ncm). The linear compressibility of crystallographic axes and room-temperature pressure-volume equation of state are reported for the three compounds studied. Calculated elastic constants and moduli are also reported as well as a systematic discussion of the high-pressure behavior and bulk modulus of M2SnO4 stannates.

2.
Nanotechnology ; 28(24): 245605, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28452330

RESUMO

A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA