Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(37): 14082-14089, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37675846

RESUMO

In marine environments, microscopic droplets of oil can be transported over large distances in the water column. Bacterial growth on the droplets' surface can deform the oil-water interface to generate complex shapes and significantly enlarge droplets. Understanding the fate of spilled oil droplets requires bridging these length scales and determining how microscale processes affect the large-scale transport of oil. Here, we describe an experimental setup, the hydrodynamic treadmill, developed to keep rising oil droplets stationary in the lab frame for continuous and direct observation. Oil droplets with radii 10 < R < 100 µm were colonized and deformed by bacteria over several days before their effective rising speeds were measured. The rising speeds of deformed droplets were significantly slower than those of droplets without bacteria. This decrease in rising speed is understood by an increase in drag force and a decrease in buoyancy as a result of bio-aggregate formation at the droplet surface. Additionally, we found sinking bio-aggregate particles of oil and bacterial biofilms and quantified their composition using fluorescence microscopy. Our experiments can be adapted to further study the interactions between oil droplets and marine organisms and could significantly improve our understanding of the transport of hydrocarbons and complex aggregates.


Assuntos
Bactérias , Hidrodinâmica , Biofilmes , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA