Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Phytomedicine ; 129: 155591, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692075

RESUMO

BACKGROUND: Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, characterized by a syndrome of uncontrolled systemic inflammation that often leads to significant morbidity and death. Anti-inflammatory is one of its treatment methods, but there is no safe and available drug therapy. Syringic acid (SA) is a natural organic compound commonly found in a variety of plants, especially in certain woody plants and fruits. In modern pharmacological studies, SA has anti-inflammatory effects and therefore may be a potentially safe and available compound for the treatment of acute lung injury. PURPOSE: This study attempts to reveal the protective mechanism of SA against ALI by affecting the polarization of macrophages and the activation of NF-κB signaling pathway. Trying to find a safer and more effective drug therapy for clinical use. METHODS: We constructed the ALI model using C57BL/6 mice by intratracheal instillation of LPS (10 mg/kg). Histological analysis was performed with hematoxylin and eosin (H&E). The wet-dry ratio of the whole lung was measured to evaluate pulmonary edema. The effect of SA on macrophage M1-type was detected by flow cytometry. BCA protein quantification method was used to determine the total protein concentration in bronchoalveolar lavage fluid (BALF). The levels of Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α in BALF were determined by the ELISA kits, and RT-qPCR was used to detect the expression levels of IL-6, IL-1ß and TNF-α mRNA of lung tissue. Western blot was used to detect the expression levels of iNOS and COX-2 and the phosphorylation of p65 and IκBα in the NF-κB pathway in lung tissue. In vitro experiments were conducted with RAW267.4 cell inflammation model induced by 100 ng/ml LPS and A549 cell inflammation model induced by 10 µg/ml LPS. The effects of SA on M1-type and M2-type macrophages of RAW267.4 macrophages induced by LPS were detected by flow cytometry. The toxicity of compound SA to A549 cells was detected by MTT method which to determine the safe dose of SA. The expressions of COX-2 and the phosphorylation of p65 and IκBα protein in NF-κB pathway were detected by Western blot. RESULTS: We found that the pre-treatment of SA significantly reduced the degree of lung injury, and the infiltration of neutrophils in the lung interstitium and alveolar space of the lung. The formation of transparent membrane in lung tissue and thickening of alveolar septum were significantly reduced compared with the model group, and the wet-dry ratio of the lung was also reduced. ELISA and RT-qPCR results showed that SA could significantly inhibit the production of IL-6, IL-1ß, TNF-α. At the same time, SA could significantly inhibit the expression of iNOS and COX-2 proteins, and could inhibit the phosphorylation of p65 and IκBα proteins. in a dose-dependent manner. In vitro experiments, we found that flow cytometry showed that SA could significantly inhibit the polarization of macrophages from M0 type macrophages to M1-type macrophages, while SA could promote the polarization of M1-type macrophages to M2-type macrophages. The results of MTT assay showed that SA had no obvious cytotoxicity to A549 cells when the concentration was not higher than 80 µM, while LPS could promote the proliferation of A549 cells. In the study of anti-inflammatory effect, SA can significantly inhibit the expression of COX-2 and the phosphorylation of p65 and IκBα proteins in LPS-induced A549 cells. CONCLUSION: SA has possessed a crucial anti-ALI role in LPS-induced mice. The mechanism was elucidated, suggesting that the inhibition of macrophage polarization to M1-type and the promotion of macrophage polarization to M2-type, as well as the inhibition of NF-κB pathway by SA may be the reasons for its anti-ALI. This finding provides important molecular evidence for the further application of SA in the clinical treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Ácido Gálico , Lipopolissacarídeos , Macrófagos , Camundongos Endogâmicos C57BL , NF-kappa B , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Camundongos , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Pulmão/efeitos dos fármacos , Pulmão/patologia , Células RAW 264.7 , Interleucina-1beta/metabolismo , Líquido da Lavagem Broncoalveolar , Óxido Nítrico Sintase Tipo II/metabolismo , Interleucina-6/metabolismo
2.
J Thorac Dis ; 15(10): 5534-5548, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969309

RESUMO

Background: Pulmonary cryptococcosis (PC) contributes to the ongoing global disease burden in human immunodeficiency virus (HIV)-negative populations. Since some PC patients are misdiagnosed under existing diagnostic guidelines, new diagnostic markers are needed to improve diagnostic accuracy and therapeutic efficacy and reduce disease risk. Methods: Our previously established sphingolipidomic approach was employed to explore the use of serum sphingolipids (SPLs) in diagnosing HIV-negative patients with PC. A clinical cohort of PC, pulmonary aspergillosis (PA), and tuberculosis (TB) patients and healthy controls was assessed to identify SPL biomarkers. Results: A total of 47 PC, 27 PA, and 18 TB patients and 40 controls were enrolled. PC and TB patients had similar clinical features, laboratory test results and radiological features, excluding plural effusion. The serum ceramide [Cer (d18:1/18:0)] level showed a significant increase in PC patients compared to controls and PA and TB patients (P<0.05). Cer (d18:1/18:0) was identified as a specific diagnostic biomarker for PC. The optimal cut-off value of greater than 18.00 nM showed a diagnostic sensitivity of 76.60% and a specificity of 95.00% and better distinguished PC patients from PA and TB patients. Furthermore, the serum Cer (d18:1/18:0) level gradually decreased after 3 and 6 months of treatment, suggesting the prediction potential for therapeutic efficacy of this biomarker. In addition, Cer (d18:1/18:0) analysis presented a higher sensitivity than the cryptococcal antigen (CrAg) assay. Conclusions: This is the first study to report the use of the SPL Cer (d18:1/18:0) as a serum biomarker for diagnosing Cryptococcus spp. infection in HIV-negative patients.

3.
Nat Commun ; 14(1): 5115, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607911

RESUMO

Response to immunotherapy widely varies among cancer patients and identification of parameters associating with favourable outcome is of great interest. Here we show longitudinal monitoring of peripheral blood samples of non-small cell lung cancer (NSCLC) patients undergoing anti-PD1 therapy by high-dimensional cytometry by time of flight (CyTOF) and Meso Scale Discovery (MSD) multi-cytokines measurements. We find that higher proportions of circulating CD8+ and of CD8+CD101hiTIM3+ (CCT T) subsets significantly correlate with poor clinical response to immune therapy. Consistently, CD8+ T cells and CCT T cell frequencies remain low in most responders during the entire multi-cycle treatment regimen; and higher killer cell lectin-like receptor subfamily G, member 1 (KLRG1) expression in CCT T cells at baseline associates with prolonged progression free survival. Upon in vitro stimulation, CCT T cells of responders produce significantly higher levels of cytokines, including IL-1ß, IL-2, IL-8, IL-22 and MCP-1, than of non-responders. Overall, our results provide insights into the longitudinal immunological landscape underpinning favourable response to immune checkpoint blockade therapy in lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia , Citocinas , Subfamília D de Receptores Semelhantes a Lectina de Células NK
4.
Pharmacol Res ; 194: 106850, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37453674

RESUMO

Non-small cell lung cancer (NSCLC) is one of the main malignant tumors with high mortality and short survival time. Immunotherapy has become the standard treatment for advanced NSCLC, but it has the problems of drug resistance and low response rate. Therefore, obtaining effective biomarkers to predict and enhance immune checkpoint inhibitors (ICIs) efficacy in NSCLC is important. Sphingolipid metabolism is recently found to be closely involved in tumor immunotherapy. CERS4, an important sphingolipid metabolizing enzyme, is positively correlated with the efficacy of anti-PD-1 therapy for NSCLC. Upregulation of CERS4 expression could improve the efficacy of anti-PD-1 therapy for NSCLC. High expression of CERS4 could downregulate the expression of Rhob in tumor. Significantly, the ratio of CD4+/CD8+ T cell increased and the ratio of Tim-3+/CD8+ T cell decreased in spleen and peripheral blood cells. When Rhob was knocked out, the efficacy of PD-1 mAb treatment increased, and the frequency of Tim-3+ CD8+ T cell decreased. This finding further confirmed the role of sphingolipid metabolites in regulating the immunotherapeutic function of NSCLC. These metabolites may improve the efficacy of PD-1 mAb in NSCLC by regulating the CERS4/Rhob/Tim-3 axis. Overall, this study provided a potential and effective target for predicting and improving the efficacy of ICIs for NSCLC. It also provided a new perspective for the study on the mechanisms of ICIs resistance for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linfócitos T CD8-Positivos , Imunomodulação , Neoplasias Pulmonares/patologia
5.
Phytomedicine ; 114: 154751, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004400

RESUMO

BACKGROUND: Chronic diseases such as tumors and autoimmune disorders are closely linked to metabolism and immunity and require conflicting treatment methods. AMPK can regulate cell growth and inflammation through energy metabolism. Sinomenine is a compound extracted from the traditional Chinese herb sinomenium acutum (Thunb.) Rehd. et Wils. It has been used to treat NSCLC (non-small-cell lung cancer) and RA (rheumatoid arthritis) in some studies, but with limited understanding of its mechanisms. OBJECTIVE: This study aims to examine the inhibitory effect of sinomenine hydrochloride (SH) on NSCLC and RA and to understand the underlying joint mechanisms. RESULTS: The results indicate that SH has a cytotoxic effect specifically on tumor cells, but not on normal cells. SH was found to induce cell apoptosis by activating the AMPK-mTOR pathway. Additionally, in autoimmune disease cell models, SH was shown to reduce the growth of RA-FLS cells by inhibiting the phosphorylation of AMPK, while having no effect on normal macrophages. Moreover, in vivo studies also showed that SH could reduce the production of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 and slow the development of adjuvant arthritis in rats. Furthermore, SH was found to significantly suppress tumor growth in a tumor xenograft experiment in mice. CONCLUSIONS: This study provides new insights into the treatment of tumors and autoimmune diseases by demonstrating that SH can selectively inhibit the growth of NSCLC cells and the progression of RA through activation of the AMPK pathway.


Assuntos
Antineoplásicos , Artrite Reumatoide , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Ratos , Camundongos , Animais , Proteínas Quinases Ativadas por AMP , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Antineoplásicos/uso terapêutico
6.
Medicine (Baltimore) ; 101(41): e31027, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36254028

RESUMO

Pleural effusion (PE) is a common manifestation of tuberculosis (TB) and malignant tumors but tuberculous PE (TPE) is difficult to distinguish from malignant PE (MPE), especially by noninvasive detection indicators. This study aimed to find effective detection indices in blood and PE for differentiating TB from a malignant tumor. A total of 815 patients who were diagnosed with TB or cancer in Hubei Shiyan Taihe Hospital from 2014 to 2017 were collected. Amongst them, 717 were found to have PE by thoracoscopy. Clinical characteristics, patients' blood parameters and PE indicator information were summarized for analysis. Patients with MPE had higher percentages to be bloody and negative of Rivalta test in PE than those with TPE. For clinical indicators, comparison of the specific parameters in blood showed that 18 indicators were higher in the TPE group than in the MPE group. By contrast, 12 indicators were higher in the MPE group than in the TPE group (P < .01). In addition, in PE tests, 3 parameters were higher in the TPE group, whereas other 4 parameters were higher in the MPE group (P < .01). Then, for clinical diagnosing practice, ROC analysis and principal component analysis were applied. The top 6 relevant indicators with area under curve over 0.70 were screened out as follows: hydrothorax adenosine dehydrogenase (pADA, 0.90), hydrothorax high-sensitivity C reactive protein (0.79), percentage of blood monocyte (sMONp, 0.75), blood high-sensitivity C reactive protein (sHsCRP, 0.73), erythrocyte sedimentation rate (0.71) and blood D-dimer (0.70). Moreover, logistic regression model revealed that a specific combination of 3 biomarkers, namely, pADA, sMONp and sHsCRP, could enhance the distinguishment of TB from malignant tumor with PE (area under curve = 0.944, 95% confidence interval = 0.925-0.964). The diagnostic function of the top single marker pADA in patients from different groups was analyzed and it was found to maintain high specificity and sensitivity. The 6 indicators, namely, pADA, hydrothorax high-sensitivity C reactive protein, sMONp, sHsCRP, sESR and blood D-dimer, showed significant diagnostic value for clinicians. Further, the combination of pADA, sMONp and sHsCRP has high accuracy for differential diagnosis for the first time. Most interestingly, the single marker pADA maintained high specificity and sensitivity in patients with different statuses and thus has great value for rapid and accurate diagnosis of suspected cases.


Assuntos
Hidrotórax , Derrame Pleural Maligno , Derrame Pleural , Tuberculose Pleural , Tuberculose , Adenosina , Biomarcadores , Biomarcadores Tumorais , Proteína C-Reativa , Humanos , Oxirredutases , Derrame Pleural/diagnóstico , Derrame Pleural/etiologia , Derrame Pleural/metabolismo , Derrame Pleural Maligno/metabolismo , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose Pleural/diagnóstico
7.
Front Oncol ; 12: 941643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965565

RESUMO

Biologically active sphingolipids are closely related to the growth, differentiation, aging, and apoptosis of cancer cells. Some sphingolipids, such as ceramides, are favorable metabolites in the sphingolipid metabolic pathway, usually mediating antiproliferative responses, through inhibiting cancer cell growth and migration, as well as inducing autophagy and apoptosis. However, other sphingolipids, such as S1P, play the opposite role, which induces cancer cell transformation, migration and growth and promotes drug resistance. There are also other sphingolipids, as well as enzymes, played potentially critical roles in cancer physiology and therapeutics. This review aimed to explore the important roles of sphingolipid metabolism in cancer. In this article, we summarized the role and value of sphingolipid metabolism in cancer, including the distribution of sphingolipids, the functions, and their relevance to cancer diagnosis and prognosis. We also summarized the known and potential antitumor targets present in sphingolipid metabolism, analyzed the correlation between sphingolipid metabolism and tumor immunity, and summarize the antitumor effects of natural compounds based on sphingolipids. Through the analysis and summary of sphingolipid antitumor therapeutic targets and immune correlation, we aim to provide ideas for the development of new antitumor drugs, exploration of new therapeutic means for tumors, and study of immunotherapy resistance mechanisms.

8.
Phytomedicine ; 95: 153786, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785104

RESUMO

BACKGROUND: Lung cancer has become the principal cause of cancer-related deaths. Emodin is a Chinese herb-derived compound extracted from the roots of Rheum officinale that exhibits numerous pharmacological characteristics. Secretory phospholipase A2-IIa (sPLA2-IIa) is overexpressed in cancers and plays an important role in cancer development. PURPOSE: This study aims to investigate the anti-tumor mechanism of emodin in non-small-cell lung cancer (NSCLC). METHODS: MTT assay was applied to detect the sensitivity of emodin to NSCLC cell line. Flow cytometry was used to examine the effect of emodin on cell cycle distribution and evaluate ROS level and apoptosis. Western blot analysis was utilised to examine the expression levels of sPLA2-IIa, PKM2, and AMPK and its downstream pathways induced by emodin. Enzyme inhibition assay was applied to investigate the inhibitory effect of emodin on sPLA2-IIa. The anticancer effect of emodin was also detected using an in vivo model. RESULTS: Emodin significantly inhibited NSCLC proliferation in vivo and in vitro and was relatively less cytotoxic to normal lung cell lines. Most importantly, emodin inhibited the proliferation of KRAS mutant cell lines by decreasing the expression of sPLA2-IIa and NF-κB pathways. Emodin also inhibited mTOR and AKT and activated the AMPK pathway. Furthermore, emodin induced apoptosis, increased the reactive oxygen species (ROS) level, and arrested the cell cycle. CONCLUSION: Emodin exhibited a novel anti-tumor mechanism of inhibiting the proliferation of KRAS mutant cell lines by decreasing the expression levels of sPLA2-IIa and NF-κB pathways. Hence, emodin can potentially serve as a therapeutic target in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Emodina , Neoplasias Pulmonares , Fosfolipases A2 Secretórias , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Regulação para Baixo , Emodina/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico
9.
Phytomedicine ; 96: 153831, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34794861

RESUMO

BACKGROUND: Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking. HYPOTHESIS/PURPOSE: A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established. METHODS: The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism. CONCLUSION: This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.


Assuntos
Neoplasias Pulmonares , Preparações Farmacêuticas , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Metabolômica , Camundongos , Espectrometria de Massas em Tandem , Microtomografia por Raio-X
10.
J Orthop Translat ; 31: 41-51, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804799

RESUMO

OBJECTIVES: Vascularization is an essential step in successful bone tissue engineering. The induction of angiogenesis in bone tissue engineering can be enhanced through the delivery of therapeutic agents that stimulate vessel and bone formation. In this study, we show that cucurbitacin B (CuB), a tetracyclic terpene derived from Cucurbitaceae family plants, facilitates the induction of angiogenesis in vitro. METHODS: We incorporated CuB into a biodegradable poly (lactide-co-glycolide) (PLGA) and ß-tricalcium phosphate (ß-TCP) biomaterial scaffold (PT/CuB) Using 3D low-temperature rapid prototyping (LT-RP) technology. A rat skull defect model was used to verify whether the drug-incorporated scaffold has the effects of angiogenesis and osteogenesis in vivo for the regeneration of bone defect. Cytotoxicity assay was performed to determine the safe dose range of the CuB. Tube formation assay and western blot assay were used to analyze the angiogenesis effect of CuB. RESULTS: PT/CuB scaffold possessed well-designed bio-mimic structure and improved mechanical properties. CuB was linear release from the composite scaffold without affecting pH value. The results demonstrated that the PT/CuB scaffold significantly enhanced neovascularization and bone regeneration in a rat critical size calvarial defect model compared to the scaffold implants without CuB. Furthermore, CuB stimulated angiogenic signaling via up-regulating VEGFR2 and VEGFR-related signaling pathways. CONCLUSION: CuB can serve as promising candidate compound for promoting neovascularization and osteogenesis, especially in tissue engineering for repair of bone defects. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This study highlights the potential use of CuB as a therapeutic agent and strongly support its adoption as a component of composite scaffolds for tissue-engineering of bone repair.

11.
BMC Cancer ; 21(1): 531, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971846

RESUMO

BACKGROUND: Cervical cancer continues to be one of the leading causes of cancer deaths among females in low and middle-income countries. In this study, we aimed to assess the independent prognostic value of clinical and potential prognostic factors in progression-free survival (PFS) in cervical cancer. METHODS: We conducted a retrospective study on 92 cervical cancer patients treated from 2017 to 2019 at the Zhuhai Hospital of Traditional Chinese and Western Medicine. Tumor characteristics, treatment options, progression-free survival and follow-up information were collected. Kaplan-Meier method was used to assess the PFS. RESULTS: Results showed that the number of retrieved lymph nodes had a statistically significant effect on PFS of cervical cancer patients (P = 0.002). Kaplan-Meier survival curve analysis showed that cervical cancer patients with initial symptoms age 25-39 had worse survival prognoses (P = 0.020). And the using of uterine manipulator in laparoscopic treatment showed a better prognosis (P < 0.001). A novel discovery of our study was to verify the prognostic values of retrieved lymph nodes count combining with FIGO staging system, which had never been investigated in cervical cancer before. According to the Kaplan-Meier survival curve analysis and receiver operating characteristic (ROC) curve analysis, significant improvements were found after the combination of retrieved lymph nodes count and FIGO stage in predicting PFS for cervical cancer patients (P < 0.001, AUC = 0.826, 95% CI: 0.689-0.962). CONCLUSION: Number of retrieved lymph nodes, initial symptoms age, uterine manipulator, and retrieved lymph nodes count combining with FIGO staging system could be potential prognostic factors for cervical cancer patients.


Assuntos
Neoplasias do Colo do Útero/mortalidade , Adulto , Idoso , Feminino , Humanos , Excisão de Linfonodo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Neoplasias do Colo do Útero/patologia
12.
Chin Herb Med ; 13(4): 451-460, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36119361

RESUMO

Rheumatoid arthritis (RA), the most common inflammatory arthropathy word wild, is a systemic autoimmune disease that mainly affects the synovium of joints with a high disability rate. Metabolic mis-regulation has emerged as a fundamental pathogenesis of RA linked to immune cell dysfunction, while targeting immunometabolism provides a new and effective approach to regulate the immune responses and thus alleviate the symptom of RA. Recently, natural active compounds from traditional Chinese medicines (TCMs) have potential therapeutic effects on RA and regulating immunometabolism. In this review, in addition to updating the connection between cellular metabolism and cell function in immune cells of RA, we summarized that the anti-inflammatory mechanisms of the potential natural compounds from TCM by targeting metabolic reprogramming of immune cells, and discusses them as a rich resource for providing the new potential paradigm for the treatment of RA.

13.
Transl Oncol ; 14(1): 100907, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217646

RESUMO

Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients' plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.

15.
Engineering (Beijing) ; 6(10): 1099-1107, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33520331

RESUMO

The recent coronavirus disease 2019 (COVID-19) pandemic outbreak has caused a serious global health emergency. Supporting evidence shows that COVID-19 shares a genomic similarity with other coronaviruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and that the pathogenesis and treatment strategies that were applied 17 years ago in combating SARS-CoV and other viral infections could be taken as references in today's antiviral battle. According to the clinical pathological features of COVID-19 patients, patients can suffer from five steps of progression, starting with severe viral infection and suppression of the immune system and eventually progressing to cytokine storm, multi-organ damage, and lung fibrosis, which is the cause of mortality. Therefore, early prevention of disease progression is important. However, no specific effective drugs and vaccination are currently available, and the World Health Organization is urging the development of novel prevention and treatment strategies. Traditional Chinese medicine could be used as an alternative treatment option or in combination with Western medicine to treat COVID-19, due to its basis on historical experience and holistic pharmacological action. Here, we summarize the potential uses and therapeutic mechanisms of Chinese herbal formulas (CHFs) from the reported literature, along with patent drugs that have been recommended by institutions at the national and provincial levels in China, in order to verify their scientific foundations for treating COVID-19. In perspective, more basic and clinical studies with multiple high-tech and translational technologies are suggested to further confirm the therapeutic efficacies of CHFs.

16.
Phytomedicine ; 57: 403-410, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30851515

RESUMO

BACKGROUND: A combination of conventional disease-modifying anti-rheumatic drugs improves the treatment of rheumatoid arthritis but with high side-effects. Methotrexate (MTX) combination therapy that with high therapeutic efficacy and low toxicity is in demand in many countries to replace the use of expensive biological agents. STUDY DESIGN: This study was an open-label, 24-week, parallel randomized controlled trial conducted between November 2015 and December 2017. METHODS: Patients were randomly assigned at a 3:2 ratio to receive MTX combined with sinomenine (SIN) at a dose of 120 mg twice daily, or leflunomide (LEF) at a dose of 20 mg once daily. Efficacy and safety were assessed at weeks 4, 12 and 24. The primary efficacy endpoint was the proportion of patients achieving an American College of Rheumatology (ACR)50 response and a European League Against Rheumatism (EULAR) good response at week 24. RESULTS: A total of 101/120 (84.2%) patients completed 24 weeks of observation. In the intention-to-treat (ITT) analysis, 65.3% of patients treated with MTX + SIN showed improved disease activity as determined by the ACR50 response at week 24 compared to 69.6% of patients treated with MTX + LEF. A similar insignificant pattern was found for the ACR20 and ACR70 responses, as well as the clinical disease activity index, EULAR response, and remission and low disease activity rates between these two treatment groups. The per-protocol analysis showed results consistent with those of the ITT analysis. Notably, significant reductions in gastrointestinal adverse reactions and liver toxicity were found in patients treated with MTX + SIN compared to patients treated with MTX + LEF (p < 0.05). CONCLUSION: Considering the balance of efficacy and toxicity, the current study provides evidence that MTX + SIN combination therapy is probably one of the choices for treating patients with active rheumatoid arthritis in addition to MTX + LEF combination therapy.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Leflunomida/uso terapêutico , Metotrexato/uso terapêutico , Morfinanos/uso terapêutico , Adulto , Antirreumáticos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Quimioterapia Combinada , Feminino , Gastroenteropatias/induzido quimicamente , Humanos , Leflunomida/efeitos adversos , Masculino , Metotrexato/efeitos adversos , Pessoa de Meia-Idade , Morfinanos/efeitos adversos , Resultado do Tratamento
17.
Chin J Integr Med ; 25(4): 259-263, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30810976

RESUMO

OBJECTIVE: To observe the clinical effectiveness and safety of fire-needle therapy, an external approach of Chinese medicine in treating plaque psoriasis. METHODS: This study was a two-parallel-arm randomized controlled trial. A total of 151 participants with plaque psoriasis were randomly assigned to the fire-needle therapy group (treatment group, 76 cases) or the control group (75 cases) at a 1:1 allocation ratio using SAS software. All participants received Oral Huoxue Jiedu Decoction (, HXJDD) and applied externally vaseline cream twice a day. Participants in the treatment group received fire-needle therapy once weekly for 4 weeks plus HXJDD and vaseline cream applied the same as the control group. The primary outcome measure was Psoriasis Area and Severity Index (PASI) score, and the secondary outcomes were Dermatology Life Quality Index (DLQL), and Hamilton Anxiety Rating Scale (HAMA), as well as Chinese medicine (CM) syndrome score and photos of target lesions. The indices were evaluated before and after treatment. RESULTS: Sixty-eight patients in each group completed the study. The treatment group has not yet achieved significant improvement in PASI score (P>0.05) compared to the control group. However, significant differences were found between the two groups in relieving CM syndrome (P<0.05) and improving quality of life (P<0.05). CONCLUSION: Fire-needle appears to be safe and may have benefit for psoriasis, the short-term treatment and small sample size limit the conclusions of this study. Further rigorous randomized controlled trials with longer treatment are recommended.


Assuntos
Medicina Tradicional Chinesa , Psoríase/terapia , Adulto , Eritema/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Índice de Gravidade de Doença
18.
Cell Death Dis ; 9(6): 696, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899551

RESUMO

Non-small-cell lung cancer (NSCLC) is the predominant histological type of lung cancer and is characterized by the highest mortality and incidence rates among these types of malignancies. Cardiac glycosides, a class of natural products, have been identified as a potential type of chemotherapeutic agent. This study aims to investigate the anti-cancer effects and the mechanisms of action of Proscillaridin A (P.A) in NSCLC cells. In vitro sodium-potassium pump (Na+/K+ ATPase) enzyme assays indicated that P.A is a direct Na+/K+ ATPase inhibitor. P.A showed potent cytotoxic effects in NSCLC cells at nanomolar levels. Treatment mechanism studies indicated that P.A elevated Ca2+ levels, activated the AMPK pathway and downregulated phosphorylation of ACC and mTOR. Subsequently, P.A increased death receptor 4 (DR4) expression and downregulated NF-κB. Interestingly, P.A selectively suppressed EGFR activation in EGFR mutant cells but not in EGFR wild-type cells. In vivo, P.A significantly suppressed tumor growth in nude mice compared to vehicle-treated mice. Compared with the Afatinib treatment group, P.A displayed less pharmaceutical toxicity, as the body weight of mice treated with P.A did not decrease as much as those treated with Afatinib. Consistent changes in protein levels were obtained from western blotting analysis of tumors and cell lines. Immunohistochemistry analysis of the tumors from P.A-treated mice showed a significant suppression of EGFR phosphorylation (Tyr 1173) and reduction of the cell proliferation marker Ki-67. Taken together, our results suggest that P.A is a promising anti-cancer therapeutic candidate for NSCLC.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proscilaridina/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Regulação para Cima/efeitos dos fármacos , Acetil-CoA Carboxilase/metabolismo , Adenilato Quinase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/metabolismo , Modelos Biológicos , Mutação/genética , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Proscilaridina/química , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Pharmacol Ther ; 191: 148-161, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29953901

RESUMO

Dysregulation of cell metabolism and redox balance is implicated in the pathogenesis and progression of cancer and autoimmune diseases. Because the cell proliferation and apoptotic regulatory pathways are interconnected with metabolic and redox signalling pathways, the current mono-target treatment is ineffective, and multi-drug resistance remains common. Complex diseases are often implicated in a network-based context of pathology; therefore, a new holistic intervention approach is required to block multi-crosstalk in such complicated circumstances. The use of therapeutic agents isolated from herbs to holistically modulate metabolism and redox state has been shown to relieve carcinoma growth and the inflammatory response in autoimmune disorders. Multiple clinically applied or novel herbal chemicals with metabolic and redox modulatory capacity as well as low toxicity have recently been identified. Moreover, new metabolic targets and mechanisms of drug action have been discovered, leading to the exploration of new pathways for drug repositioning, clinical biomarker spectra, clinical treatment strategies and drug development. Taken together with multiple supporting examples, the modulation of cell metabolism and the redox capacity using herbal chemicals is emerging as a new, alternative strategy for the holistic treatment of cancer and autoimmune disorders. In the future, the development of new diagnostic tools based on the detection of metabolic and redox biomarkers, reformulation of optimized herbal compositions using artificial intelligence, and the combination of herbs with mono-targeting drugs will reveal new potential for clinical application.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Desenvolvimento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Doenças Autoimunes/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Reposicionamento de Medicamentos , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Preparações de Plantas/administração & dosagem , Preparações de Plantas/farmacologia
20.
Chem Biol Drug Des ; 92(5): 1851-1858, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29931766

RESUMO

Lung cancer is the number one cancer in terms of both mortality and incidence. Cancer cells differ from normal cells in that they can reprogram their metabolism to support a rapid proliferation rate and alter oxidative phosphorylation processes toward lactic acid fermentation, even under aerobic conditions. Therefore, we aimed to identify new compounds that might act as pyruvate kinase M2 isoform (PKM2) activators and to investigate their anti-cancer efficacy in non-small-cell lung cancer (NSCLC) cells. The molecular docking method was applied to screen PKM2 activators from our virtual natural products library. Then, compounds with promising docking scores were examined for cytotoxic effects in a panel of NSCLC cells using the MTT assay. Functional effects and therapeutic mechanisms were investigated by in vitro enzyme assays, western blotting (WB), and flow cytometry. Molecular docking showed that 0089-0022 acts as a potential PKM2 activator by binding to the kinase pocket. An in vitro enzyme activity assay showed that 0089-0022 is a direct PKM2 activator and that it effectively induces apoptosis in A549 and H1975 cells through inhibition of AKT phosphorylation. Our results suggest that 0089-0022 activates PKM2 and thus is a promising anti-cancer therapeutic candidate in NSCLC.


Assuntos
Antineoplásicos/química , Piruvato Quinase/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Piruvato Quinase/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA