RESUMO
As a potent atmospheric greenhouse gas and a major source of ozone depletion, nitrous oxide (N2O) emission has been given increasing attention in aquatic systems, particularly at the aquatic-terrestrial interfaces, such as riparian zones. However, the microbial mechanisms regulating N2O emission in riparian zones remain unknown. Here, we measured the contributions of denitrification and ammonium oxidation to N2O emission along with the abundance and community structure of nirK-, nirS-, nosZ I- and nosZ II-harbouring bacteria in both surface sediments (0-10 cm) and overlying water along a lake riparian zone (including nearshore sites and offshore sites). Overall, the nearshore sites of the riparian zones emitted less N2O than the offshore sites. Nearshore N2O emission was dominated by denitrification with a high N2O reduction rate, whereas offshore N2O emission was driven by ammonium oxidation. Furthermore, N2O derived from ammonium oxidation was influenced by the NH4+-N content, and denitrification N2O was modulated by denitrifier communities. The N2O-producing community was dominated by nirS-harbouring bacteria, while the N2O-reducing community was dominated by nosZ I-harbouring bacteria. The relative abundance of Hydrogenophilales from nirS-denitrifiers and Chloroflexi unclassified from nosZ II-type communities influenced the N2O produced by denitrification, according to high-throughput sequencing analysis. Additionally, we also found lower levels of N2O production per unit volume in overlying water, which were 3-4 orders of magnitude less than in the surface sediment. Overall, we propose that using riparian zones can be an effective management tool for N2O mitigation by enhancing the N2O reduction process of denitrification and decreasing ammonium oxidation.
Assuntos
Desnitrificação , Microbiologia do Solo , Bactérias , Óxido Nitroso/análise , SoloRESUMO
OBJECTIVES: the current study aimed to investigate the relationship between physical activity (PA) level and inhibitory control performance and then to determine whether this association was mediated by multiple sleep parameters (i.e., subjective sleep quality, sleep duration, sleep efficiency, and sleep disturbance). METHODS: 180 healthy university students (age: 20.15 ± 1.92 years) from the East China Normal University were recruited for the present study. PA level, sleep parameters, and inhibitory control performance were assessed using the International Physical Activity Questionnaire (IPAQ), the Pittsburgh Sleep Quality Index Scale (PSQI), and a Stroop test, respectively. The data were analyzed using structural equation modeling. RESULTS: A higher level of PA was linked to better cognitive performance. Furthermore, higher subjective sleep quality and sleep efficiency were associated with better inhibitory control performance. The mediation analysis revealed that subjective sleep quality and sleep efficiency mediated the relationship between PA level and inhibitory control performance. CONCLUSION: our results are in accordance with the literature and buttress the idea that a healthy lifestyle that involves a relatively high level of regular PA and adequate sleep patterns is beneficial for cognition (e.g., inhibitory control performance). Furthermore, our study adds to the literature that sleep quality and sleep efficiency mediates the relationship between PA and inhibitory control performance, expanding our knowledge in the field of exercise cognition.
RESUMO
Nitrate (NO3-) reduction partitioning between denitrification, anaerobic ammonium oxidation (anammox), denitrifying anaerobic methane oxidation (DAMO), and dissimilatory nitrate reduction to ammonium (DNRA), can influence the nitrogen (N) use efficiency and crop production in arid farmland. The microbial structure, function and potential rates of denitrification, anammox, DAMO and DNRA, and their respective contributions to total NO3- reduction were investigated in rhizosphere and non-rhizosphere soil of four typical crops in north China by functional gene amplification, high-throughput sequencing, network analysis and isotopic tracing technique. The measured denitrification and DNRA rate varied from 0.0294 to 20.769 nmol N g-1 h-1and 2.4125-58.682 nmol N g-1 h-1, respectively, based on which DNRA pathway contributed to 84.44 ± 14.40% of dissimilatory NO3- reduction, hence dominated NO3- reduction processes compared to denitrification. Anammox and DAMO were not detected. High-throughput sequencing analysis on DNRA nrfA gene, and denitrification nirS and nirK genes demonstrated that these two processes did not correlate to corresponding gene abundance or dominant genus. RDA and Pearson's correlation analysis illustrated that DNRA rate was significantly correlated with the abundance of Chthiniobacter, as well as total organic matter (TOM); denitrification rate was significantly correlated with the abundance of Lautropia, so did TOM. Network analysis showed that the genus performed DNRA was the key connector in the microbial community of dissimilatory nitrate reducers. This study simultaneously investigated the dissimilatory nitrate reduction processes in rhizosphere and non-rhizosphere soils in arid farmland, highlighting that DNRA dominated NO3- reduction processes against denitrification. As denitrification results in N loss, whereas DNRA contributes to N retention, the relative contributions of DNRA versus denitrification activities should be considered appropriately when assessing N transformation processes and N fertilizer management in arid farmland fields.
Assuntos
Compostos de Amônio , China , Desnitrificação , Fazendas , Nitratos/análise , Nitritos , Nitrogênio , Oxirredução , Rizosfera , SoloRESUMO
The increased nitrogen (N) fertilizer usage caused substantial nitrate (NO3-) leaching into groundwater and eutrophication in downstream aquatic systems. Riparian zones positioned as the link interfaces of terrestrial and aquatic environments are effective in NO3- removal. However, the microbial mechanisms regulating NO3- reduction in riparian zones are still unclear. In this study, four microbial NO3- reduction processes were explored in fine-scale riparian soil horizons by isotopic tracing technique, qPCR of functional gene, high-throughput amplicon sequencing, and phylogenetic molecular ecological network analysis. Interestingly, anaerobic ammonium oxidation (anammox) contributed to NO3- removal of up to 48.2% only in waterward sediments but not in landward soil. Denitrification was still the most significant contributor to NO3- reduction (32.0-91.8%) and N-losses (51.7-100%). Additionally, dissimilatory nitrate reduction to ammonium (DNRA) played a key role in NO3- reduction (4.4-67.5%) and was even comparable to denitrification. Community structure analysis of denitrifying, anammox, and DNRA bacterial communities targeting the related functional gene showed that spatial heterogeneity played a greater role than both temporal and soil type (rhizosphere and non-rhizosphere soil) variability in microbial community structuring. Denitrification and DNRA communities were diverse, and their activities did not depend on gene abundance but were significantly related to organic matter, suggesting that gene abundance alone was insufficient in assessing their activity in riparian zones. Based on networks, DNRA plays a keystone role among the microbial NO3- reducers. As the last line of defense in the interception of terrestrial NO3-, these findings contribute to our understanding of NO3- removal mechanisms in riparian zones, and could potentially be exploited to reduce the diffusion of NO3- pollution.
Assuntos
Compostos de Amônio , Nitratos , Rizosfera , Desnitrificação , Nitratos/química , Nitrogênio , FilogeniaRESUMO
Alternative pre-mRNA splicing remarkably expands protein diversity in eukaryotes. Drosophila PGRP-LC can generate three major 3' splice isoforms that exhibit distinct innate immune recognition and defenses against various microbial infections. However, the regulatory mechanisms underlying the uniquely biased splicing pattern at the 3' variable region remain unclear. Here we show that competing RNA pairings control the unique splicing of the 3' variable region of Drosophila PGRP-LC pre-mRNA. We reveal three roles by which these RNA pairings jointly regulate the 3' variant selection through activating the proximal 3' splice site and concurrently masking the intron-proximal 5' splice site, in combination with physical competition of RNA pairing. We also reveal that competing RNA pairings regulate alternative splicing of the highly complex 3' variable regions of Drosophila CG42235 and Pip Our findings will facilitate a better understanding of the regulatory mechanisms of highly complex alternative splicing as well as highly variable 3' processing.
Assuntos
Processamento Alternativo , Pareamento de Bases , Precursores de RNA/genética , Sítios de Splice de RNA , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Drosophila/genética , Éxons , Íntrons , Modelos Biológicos , Conformação de Ácido Nucleico , Precursores de RNA/químicaRESUMO
The gene Down syndrome cell adhesion molecule (Dscam) potentially encodes 38 016 distinct isoforms in Drosophila melanogaster via mutually exclusive splicing. Here we reveal a combinatorial mechanism of regulation of Dscam exon 17 mutually exclusive splicing through steric hindrance in combination with RNA secondary structure. This mutually exclusive behavior is enforced by steric hindrance, due to the close proximity of the exon 17.2 branch point to exon 17.1 in Diptera, and the interval size constraint in non-Dipteran species. Moreover, intron-exon RNA structures are evolutionarily conserved in 36 non-Drosophila species of six distantly related orders (Diptera, Lepidoptera, Coleoptera, Hymenoptera, Hemiptera, and Phthiraptera), which regulates the selection of exon 17 variants via masking the splice site. By contrast, a previously uncharacterized RNA structure specifically activated exon 17.1 by bringing splice sites closer together in Drosophila, while the other moderately suppressed exon 17.1 selection by hindering the accessibility of polypyrimidine sequences. Taken together, these data suggest a phylogeny of increased complexity in regulating alternative splicing of Dscam exon 17 spanning more than 300 million years of insect evolution. These results also provide models of the regulation of alternative splicing through steric hindrance in combination with dynamic structural codes.
Assuntos
Processamento Alternativo , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Insetos/metabolismo , Animais , Sequência de Bases , Moléculas de Adesão Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Evolução Molecular , Éxons , Regulação da Expressão Gênica , Proteínas de Insetos/metabolismo , Insetos/classificação , Insetos/genética , Íntrons , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Sítios de Splice de RNA/genéticaRESUMO
The most striking example of alternative splicing in a Drosophila melanogaster gene is observed in the Down syndrome cell adhesion molecule, which can generate 38,016 different isoforms. RNA secondary structures are thought to direct the mutually exclusive splicing of Down syndrome cell adhesion molecule, but the underlying mechanisms are poorly understood. Here we describe a locus control region that can activate the exon 6 cluster and specifically allow for the selection of only one exon variant in combination with docking site selector sequence interactions. Combining comparative genomic studies of 63 species with mutational analysis reveals that intricate, tandem multi-'subunit' RNA structures within the locus control region activate species-appropriate alternative variants. Importantly, strengthening the weak splice sites of the target exon can remove the locus control region dependence. Our findings not only provide a locus control region-dependent mechanism for mutually exclusive splicing, but also suggest a model for the evolution of increased complexity in a long-range RNA molecular machine.
Assuntos
Moléculas de Adesão Celular/efeitos dos fármacos , Proteínas de Drosophila/efeitos dos fármacos , Região de Controle de Locus Gênico/genética , Processamento Alternativo/genética , Animais , Sequência Conservada/genética , Daphnia/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Éxons/genética , Himenópteros/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA/genéticaRESUMO
PREMISE OF THE STUDY: Microsatellite loci were developed for Cephalotaxus oliveri, an endemic and endangered conifer in China, which will allow assessment of the levels of genetic diversity and a means to understand the genetic consequences of habitat fragmentation. METHODS AND RESULTS: Using the Fast Isolation by AFLP of Sequences COntaining (FIASCO) Repeats protocol, 19 microsatellite loci were identified in C. oliveri, 13 of which were polymorphic within a sample of 52 individuals representing five natural populations. The actual number of alleles per locus ranged from one to five. Twelve polymorphic loci were also successfully amplified in C. fortunei. CONCLUSIONS: These microsatellite loci will provide a useful tool for further investigating genetic variation in natural populations of C. oliveri, which will inform future conservation and management strategies. Additionally, cross-amplification in C. fortunei suggested the potential utility of these loci in this and other congeneric species.