Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Sci Total Environ ; : 175894, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222817

RESUMO

Understanding the dynamics of sedimentary organic carbon (SOC) in the productive continental marginal sea surrounding Antarctica is crucial for elucidating the effect of this sea on the global carbon cycle. We analyzed 31 surface sediment samples and eight sediment cores collected from Prydz Bay (PB) and the adjacent basin area. The element and stable isotope compositions, grain size compositions, and biogenic silica and lithogenic minerals of these samples were used to evaluate the spatial variations in the sources, transport mechanisms, and preservation patterns of SOC, with a particular focus on the efficiency of the biological carbon pump (BCP). Our findings reveal that the SOC originated from mixed marine/terrestrial sources. The δ13C values were higher in the Prydz Bay Gyre (PBG) region than in the open sea area. Biogenic matter-rich debris, associated with fine-grained particles (silt and clay), was concentrated in the PBG, while abiotic ice-rafted debris and coarse-grained particles were preferentially deposited in the bank and ice shelf front regions. Lithogenic matter predominated in the basin sediments. The annual accumulation rate of SOC in PB ranged from 1.6 to 6.2 g·m-2·yr-1 (mean 4.2 ±â€¯1.9 g·m--2·yr-1), and the rates were higher in the PBG than in the ice shelf front region. Estimates based on our tentative box model suggest that the efficiency of the BCP, which refers to the proportion of surface-produced organic carbon successfully transferred to deep waters, is approximately 5.7 % in PB, surpassing the global average (~0.8 %) and the efficiencies reported for other polar environments. Furthermore, our calculations indicate that the SOC preservation efficiency (the ratio of preserved to initially deposited organic carbon in sediments) in PB is approximately 79 % ±â€¯20 %, underscoring the significant carbon sequestration potential within PB. The results of this study have important implications for the effects of sediment dynamics on the carbon cycle in the sea surrounding Antarctica.

2.
Chemistry ; : e202402680, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196603

RESUMO

This work reported "trinitarian" porphyrin nanobelts, contained hetero-trimetal ions. The high-resolution mass spectrometry and X-ray crystallography proved PNBNiCuPd consisting of three different bent porphyrin(2.1.2.1) metal complex moieties. The redox properties indicate porphyrin nanobelts demonstrate the multielectron donating and accepting properties, more than nine redox processes.

3.
Inorg Chem ; 63(33): 15510-15515, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39105700

RESUMO

Stable and simplest expanded porphyrins, π-ring-fused porphyrin(2.1.1.1)s and Rh(I) complexes, have been obtained for the first time. Two free bases show chair-shaped molecular conformations, as if reassembled by the halves of porphyrin(1.1.1.1) and porphyrin(2.1.2.1). The insertion of Rh(CO)2 groups induced more twisted molecular conformations. The NMR spectra, X-ray structure, NICS, and ACID of obtained molecules all support their nonaromaticity due to chair-shaped molecular conformations. The protonated and Rh(I) coordination of porphyrin(2.1.1.1)s process red-shifted absorptions in the NIR region.

4.
Org Lett ; 26(29): 6076-6080, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38996187

RESUMO

We present a catalytic strategy for converting lignin into various pharmaceutical intermediates based on a highly selective lignin depolymerization method and a green benzylic oxidation method employing O2. Selective depolymerization of lignin first afforded 4-ethylphenol, which then efficiently generates several pharmaceutical intermediates with a simple 5-step process, resulting in substantial economic benefits. The study provides an innovative solution for the efficient utilization of lignin and the green acquisition of pharmaceutical intermediates.

5.
Talanta ; 277: 126434, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879946

RESUMO

Methyl paraoxon (MP) is a highly toxic, efficient and broad-spectrum organophosphorus pesticide, which poses significant risks to ecological environment and human health. Many detection methods for MP are based on the enzyme catalytic or inhibition effect. But natural biological enzymes are relatively expensive and easy to be inactivated with a short service life. As a unique tool of nanotechnology with enzyme-like characteristics, nanozyme has attracted increasing concern. However, a large proportion of nanozymes lack the intrinsic specificity, becoming a main barrier of constraining their use in biochemical analysis. Here, we use a one-pot reverse microemulsion polymerization combine the gold nanoclusters (AuNCs) with molecularly imprinted polymers (MIPs), polydopamine (PDA) and hollow CeO2 nanospheres to synthesize the bright red-orange fluorescence probe (CeO2@PDA@AuNCs-MIPs) with high phosphatase-like activity for selective detection of MP. The hollow structure possesses a specific surface area and porous matrix, which not only increases the exposure of active sites but also enhances the efficiency of mass and electron transport. Consequently, this structure significantly enhances the catalytic activity by reducing transport distances. The introduced MIPs provide the specific recognition sites for MP. And Ce (III) can excite aggregation induced emission of AuNCs and enhance the fluorescent signal. The absolute fluorescence quantum yield (FLQY) of CeO2@PDA@AuNCs-MIPs (1.41 %) was 12.8-fold higher than that of the GSH-AuNCs (0.11 %). With the presence of MP, Ce (IV)/Ce (III) species serve as the active sites to polarize and hydrolyze phosphate bonds to generate p-nitrophenol (p-NP), which can quench the fluorescent signal through the inner-filter effect. The as-prepared CeO2@PDA@AuNCs-MIPs nanozyme-based fluorescence method for MP detection displayed superior analytical performances with wide linearities range of 0.45-125 nM and the detection limit of 0.15 nM. Furthermore, the designed method offers satisfactory practical application ability. The developed method is simple and effective for the in-field detection.


Assuntos
Ouro , Polímeros Molecularmente Impressos , Polímeros , Espectrometria de Fluorescência , Polímeros Molecularmente Impressos/química , Polímeros/química , Espectrometria de Fluorescência/métodos , Ouro/química , Nanopartículas Metálicas/química , Cério/química , Corantes Fluorescentes/química , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/química , Paraoxon/análise , Paraoxon/análogos & derivados , Paraoxon/química , Indóis/química , Fluorescência , Limite de Detecção
6.
ACS Nano ; 18(19): 12547-12559, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695563

RESUMO

Enantioselective sensing and separation represent formidable challenges across a diverse range of scientific domains. The advent of hybrid chiral membranes offers a promising avenue to address these challenges, capitalizing on their unique characteristics, including their heterogeneous structure, porosity, and abundance of chiral surfaces. However, the prevailing fabrication methods typically involve the initial preparation of achiral porous membranes followed by subsequent modification with chiral molecules, limiting their synthesis flexibility and controllability. Moreover, existing chiral membranes struggle to achieve coupled-accelerated enantioseparation (CAE). Here, we report a replacement strategy to controllably produce mesoscale and chiral silica-carbon (MCSC) hybrid membranes that comprise chiral pores by interfacial superassembly on a macroporous alumina (AAO) membrane, in which both ion- and enantiomers can be effectively and selectively transported across the membrane. As a result, the heterostructured hybrid membrane (MCSC/AAO) exhibits enhanced selectivity for cations and enantiomers of amino acids, achieving CAE for amino acids with an isoelectric point (pI) exceeding 7. Interestingly, the MCSC/AAO system demonstrates enhanced pH-sensitive enantioseparation compared to chiral mesoporous silica/AAO (CMS/AAO) with significant improvements of 78.14, 65.37, and 14.29% in the separation efficiency, separation factor, and permeate flux, respectively. This work promises to advance the synthesis of two or more component-integrated chiral nanochannels with multifunctional properties and allows a better understanding of the origins of the homochiral hybrid membranes.

7.
Small ; 20(31): e2312151, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38438931

RESUMO

Rationally and precisely tuning the composition and structure of materials is a viable strategy to improve electrochemical deionization (EDI) performances, which yet faces enormous challenges. Herein, an eco-friendly biomimetic mineralization synthetic strategy is developed to synthesize the flower-like cobalt selenide/reduced graphene oxide (Bio-CoSe2/rGO) composites and used as advanced sodium ion adsorption electrodes. Benefiting from the slow and controllable reaction kinetics provided by the biomimetic mineralization process, the flower-like CoSe2 is uniformly constructed in the rGO, which is endowed with robust architecture, substantial adsorption sites and rapid charge/ion transport. The Bio-CoSe2/rGO electrode yields the maximum salt adsorption capacity and salt adsorption rate of 56.3 mg g-1 and 5.6 mg g-1 min-1 respectively, and 92.5% capacity retention after 60 cycles. These results overmatch the pristine CoSe2 and irregular granular CoSe2/rGO synthesized by a hydrothermal method, proving the structural superiority of the Bio-CoSe2/rGO composites. Furthermore, the in-depth adsorption kinetics study indicates the chemisorption nature of sodium ion adsorption. The structures of the Bio-CoSe2/rGO composites after long term EDI cycles are intensively studied to unveil the mechanism behind such superior EDI performances. This study offers one effective method for constructing advanced EDI electrodes, and enriches the application of the biomimetic mineralization synthetic strategy.

8.
J Hazard Mater ; 469: 133908, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428297

RESUMO

Uranium, as the most essential resource for nuclear power production, provides 13% of global electricity demand, has attracted considerable attention. However, it is still a great challenge for uranium extraction from natural water like salt lakes as the background of high salinity and low concentration (3.3 ∼ 330 ppb). Meanwhile, current uranium extraction strategies are generally focus on extraction capacity or selectivity but neglect to enhance extraction rate. In this work, we designed a novel kind of NIR-driven intelligent nanorobots catchers (MSSA-AO) with amidoxime as claws for uranium capture, which showed almost 100% extraction rate and an ultrafast extraction rate. Importantly, high extraction capacity (221.5 mg g-1) and selectivity were taken into consideration as well as good regeneration performance. Furthermore, amidoxime NRCs boosted in extraction amount about 16.7% during the first 5 min with self-driving performance. Overall, this work suggests a new strategy for ultrafast extraction of uranium from natural water with low abundance selectively by self-propelled NRCs, showing great possibility in outdoor application and promising for meeting huge energy needs globally.

9.
ChemSusChem ; 17(9): e202400241, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38494446

RESUMO

The design of high activity catalyst for the efficiently conversion of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) gains great interest. The rationally tailoring of electronic structure directly affects the interaction between catalysts and organic substrates, especially molecular oxygen as the oxidant. This work, the bimetallic catalysts AuPd/CeO2 were prepared by the combining method of chemical reduction and photo-deposition, effectively concerting charge between Au and Pd and forming the electron-rich state of Au. The increasing of oxygen vacancy concentration of CeO2 by acidic treatment can facilitate the adsorption of HMF for catalysts and enhance the yield of FDCA (99.0 %). Moreover, a series of experiment results combining with density functional theory calculation illustrated that the oxidation performance of catalyst in HMF conversion was strongly related to the electronic state of interfacial Au-Pd-CeO2. Furthermore, the electron-rich state sites strengthen the adsorption and activation of molecular oxygen, greatly promoting the elimination of ß-hydride for the selective oxidation of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) to FDCA, accompanied with an outgoing FDCA formation rate of 13.21 mmol ⋅ g-1 ⋅ min-1 at 80 °C. The perception exhibited in this research could be benefit to understanding the effects of electronic state for interfacial sites and designing excellent catalysts for the oxidation of HMF.

10.
Adv Mater ; 36(19): e2310318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320755

RESUMO

Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.


Assuntos
Neoplasias , Neutrófilos , Microambiente Tumoral , Humanos , Neutrófilos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Animais , Microambiente Tumoral/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/química , Vesículas Extracelulares/metabolismo , Portadores de Fármacos/química
11.
J Hazard Mater ; 468: 133793, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387181

RESUMO

Tea polyphenols (TPs), like green tea polyphenol (GTP) and black tea polyphenol (BTP), with phenolic hydroxyl structures, form coordination and hydrogen bonds, making them effective for bridging inorganic catalysts and membranes. Here, TPs were employed as interface agents for the preparation of TPs-modified needle-clustered NiCo-layered double hydroxide/graphene oxide membranes (NiCo-LDH-TPs/GO). The incorporation of porous guest material, NiCo-LDH-TPs, facilitated water channel expansion, enhancing membrane permeability and resulting in the development of high-performance, sustainable catalytic cleaning membranes. The introduction of TPs through coordination weakened the surface electronegativity of NiCo-LDH, promoting a uniform mixed dispersion with GO and facilitating membrane self-assembly. NiCo-LDH-GTP/GO-5 and NiCo-LDH-BTP/GO-5 membranes demonstrated permeances of 85.98 and 90.76 L m-2 h-1 bar-1, respectively, with rejections of 98.73% and 99.54% for methylene blue (MB). Notably, the NiCo-LDH-BTP/GO-5 membrane maintained a high rejection of 97.11% even after 18 cycles in the catalytic cleaning process. Furthermore, the modification of GTP and BTP enhanced MB degradation through PMS activation, resulting in a 0.33% and 0.35% increase in the reaction rate constants of NiCo-LDH, respectively, while reducing metal ion spillover. These findings highlighted the potential of TPs in enhancing the efficiency and sustainability of catalytic cleaning GO membranes for water purification and separation processes.

12.
Langmuir ; 40(9): 4927-4939, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38377532

RESUMO

Serious water contamination induced by massive discharge of cadmium(II) ions is becoming an emergent environmental issue due to high toxicity and bioaccumulation; thus, it is extremely urgent to develop functional materials for effectively treating with Cd2+ from wastewater. Benefiting from abundant binding sites, simple preparation process, and adjustable structure, UiO-66-type metal-organic frameworks (MOFs) had emerged as promising candidates in heavy metal adsorption. Herein, monolithic UiO-66-(COOH)2-functionalized cellulose fiber (UCLF) adsorbents were simply fabricated by incorporating MOFs into cellulose membranes through physical blending and self-entanglement. A two-dimensional structure was facilely constructed by cellulose fibers from sustainable biomass agricultural waste, providing a support platform for the integration of eco-friendly UiO-66-(COOH)2 synthesized with lower temperature and toxicity solvent. Structure characterization and bath experiments were performed to determine operational conditions for the maximization of adsorption capacity, thereby bringing out an excellent adsorption capacity of 96.10 mg/g. UCLF adsorbent holding 10 wt % loadings of UiO-66-(COOH)2 (UCLF-2) exhibited higher adsorption capacity toward Cd2+ as compared to other related adsorbents. Based on kinetics, isotherms, and thermodynamics, the adsorption behavior was spontaneous, exothermic, as well as monolayer chemisorption. Coordination and electrostatic attraction were perhaps mechanisms involved in the adsorption process, deeply unveiled by the effects of adsorbate solution pH and X-ray photoelectron spectroscopy. Moreover, UCLF-2 adsorbent with good mechanical strength offered a structural guarantee for the successful implementation of practical applications. This study manifested the feasibility of UCLF adsorbents used for Cd2+ adsorption and unveiled a novel strategy to shape MOF materials for wastewater decontamination.

13.
Chem Commun (Camb) ; 60(15): 2062-2065, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38288752

RESUMO

Here, we present a synthetic route towards γ-amino alcohols with continuous stereocenters based on a copper-catalyzed asymmetric conjugate addition/CO2-trapping tandem reaction of α,ß-unsaturated amide, followed by a reduction of the generated α-carboxyl amide. This strategy provides a green route for the transformation of CO2 into valuable chiral organic molecules.

14.
J Hazard Mater ; 465: 133230, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134695

RESUMO

Previous research had proved that molecular imprinted polymers can be used as separation material for removing Naringin (NRG) from agricultural pomelo wastes effectively. But the adsorption amounts of NRG molecules from traditional MIPs was quite low by using boronic acid as functional monomer because of single affinity interaction. Therefore, we developed the new combination of bifunctional monomers (i.e. low pKa boronate affinity monomer 2,4-difluoro-3-formylphenylboronic acid and dopamine) based on cellulose nanocrystals (CNCs) mixed with polymerized high internal phase emulsion (polyHIPE, PH) through an double layer surface imprinted method. The introduction of polyethylenimine (PEI) can offer abundant anchor units for the growth of more anchor sites to immobilization template molecules. Importantly, largely improved selective adsorption amounts (50.79 µmol g-1), which may be attribute to the fabrication of the uniform growth of double imprinted layers onto the polydopamine (PDA)/boronic acid-based surfaces. In addition, the resulting double recognition molecular imprinted polymers (MIPs) based on hypercrosslinked PH (DR-HCLPH@MIPs) not only exhibited fast adsorption kinetic of NRG molecule, but also possessed excellent selectivity and high adsorption capacities at physiological pH. Meanwhile, the coarse NRG from pomelo waste can be high selectively extracted to 94.74%. Overall, this study provides a versatile approach for fabrication of the sandwich-biscuit-like double imprinting layer porous MIPs for precise identification and ultrafast transport separation of NRG from complex samples.

15.
ACS Sens ; 9(1): 433-443, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38097397

RESUMO

Given that intricate toxicological profiles exist among different antibiotics and pose serious threats to the environment and human health, synchronous analysis of multiple residues becomes crucial. Sensor arrays show potential to achieve the above purpose, but it is challenging to develop easy-to-use and high-sensitivity tools because the state-of-the-art arrays often require more than one recognition unit and are monosignal dependent. Here we exquisitely designed a fluorescent nanoprobe (2-aminoterephthalic acid-anchored CdTe quantum dots with Eu3+ coordination, CdTe-ATPA-Eu3+) featuring triple emissions at the same excitation as the only element to fabricate a luminescent sensor array with ratiometric calculations for identifying multiple antibiotics. By taking tetracycline, chlortetracycline, doxycycline, oxytetracycline, penicillin G, and sulfamethoxazole as models, the six species exhibited distinguishable motivation or/and quenching impacts on the three emissions of CdTe-ATPA-Eu3+, which were employed as indicators to perform the ratiometric logical operation and further combined with pattern recognition analysis for multitarget determination. Evidently, such a design exhibits two advances: (1) with the triple-emission probe as the sole receptor requiring neither internal nor external adjustments, the fabricated array acts as an extremely facile tool for multianalyte detection; (2) the ratiometric calculations offer excellent sensitivity and reliability for high-performance determination. Consequently, accurate identification and quantification of individual antibiotics and their combinations at various levels were verified in both laboratory and practical matrices. Our work provides a new tool for simultaneously detecting multiple antibiotics, and it will inspire the development of advanced sensor arrays for multitarget analysis.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Humanos , Antibacterianos , Compostos de Cádmio/química , Pontos Quânticos/química , Reprodutibilidade dos Testes , Telúrio/química , Corantes Fluorescentes/química
16.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138430

RESUMO

An asymmetric aza-BODIPY analogue bearing quinoxaline moiety was synthesized via a titanium tetrachloride-mediated Schiff-base-forming reaction of 6,7-dimethyl-1,4-dihydroquinoxaline-2,3-dione and benzo[d]thiazol-2-amine. This novel aza-BODIPY analogue forms a complementary hydrogen-bonded dimer due to the quinoxaline moiety in the crystal structure. It also shows intense absorption and fluorescence, with fluorescence quantum yields close to unity. The electrochemical measurements and the DFT calculations revealed the presence of the low-lying HOMO, which benefits their potential applications as an electron-transporting material.

17.
Molecules ; 28(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894522

RESUMO

Nucleoside analogs play a crucial role in the production of high-value antitumor and antimicrobial drugs. Currently, nucleoside analogs are mainly obtained through nucleic acid degradation, chemical synthesis, and biotransformation. However, these methods face several challenges, such as low concentration of the main product, the presence of complex matrices, and the generation of numerous by-products that significantly limit the development of new drugs and their pharmacological studies. Therefore, this work aims to summarize the universal separation methods of nucleoside analogs, including crystallization, high-performance liquid chromatography (HPLC), column chromatography, solvent extraction, and adsorption. The review also explores the application of molecular imprinting techniques (MITs) in enhancing the identification of the separation process. It compares existing studies reported on adsorbents of molecularly imprinted polymers (MIPs) for the separation of nucleoside analogs. The development of new methods for selective separation and purification of nucleosides is vital to improving the efficiency and quality of nucleoside production. It enables us to obtain nucleoside products that are essential for the development of antitumor and antiviral drugs. Additionally, these methods possess immense potential in the prevention and control of serious diseases, offering significant economic, social, and scientific benefits to the fields of environment, biomedical research, and clinical therapeutics.


Assuntos
Impressão Molecular , Nucleosídeos , Polímeros/química , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Cromatografia Líquida de Alta Pressão/métodos , Adsorção , Extração em Fase Sólida/métodos
18.
Inorg Chem ; 62(37): 15215-15225, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656616

RESUMO

Nanozyme-based multimode detection is a useful means to improve the accuracy and stability of analytical methods. However, both multifunctional nanozymes and related multimodal sensing strategies are still very scarce. Besides, they require complex processes to fabricate and operate. To fill this gap, here we propose a spontaneous interfacial in situ growth strategy to prepare a new bifunctional material (CePO4:Tb@MnOx) featuring good oxidase-like activity and green photoluminescence for the dual-mode colorimetric/luminescence determination of ascorbic acid (AA)-related biomarkers specifically. CePO4:Tb@MnOx was gained through the controllable redox reaction between KMnO4 and CePO4:Tb nanorods. It was interestingly found that MnOx in situ growth not only significantly enhanced the enzyme-like activity but also could reversibly regulate the luminescence of CePO4:Tb via a dual quenching mechanism. More interestingly, CePO4:Tb@MnOx exhibited a distinctive response toward AA against other reducing species. A double-coordination regulation mechanism was further verified to clarify the catalytic activity and luminescence switching behaviors in CePO4:Tb@MnOx. Based on these findings, a dual-mode colorimetric/luminescence approach was established for AA sensing in a "one-stone-two-birds" manner, providing excellent selectivity, sensitivity, and practicability. Furthermore, the determination of AA-related biomarkers, including acid phosphatase activity and organophosphorus residue, was also validated by the sensing principle. Our work not only deepens the understanding of the coordinated regulation of the luminescence and enzyme-like features in lanthanide-based materials but also offers a novel way to design and develop multifunctional nanozymes for advanced bioanalytical applications.


Assuntos
Nanotubos , Oxirredutases , Animais , Luminescência , Ácido Ascórbico , Aves
19.
Inorg Chem ; 62(37): 15277-15292, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656824

RESUMO

The construction of strong metal-support interactions in oxide-supported noble metal nanocatalysts has been considered an emerging and efficient way in improving catalytic performance in biomass-upgrading reactions. Herein, a citric acid (CA)-assisted synthesized ZrO2 layer with improved oxygen vacancy (Ov) concentrations on a natural clay mineral of halloysite nanotubes (HNTs) was designed. Moreover, AuxPdy/ZrO2@HNTs-zCA catalysts were prepared by loading AuPd bimetal and employed for aerobic oxidation of the lignocellulosic biomass-derived 5-hydroxymethylfurfural (HMF) platform to the bioplastic monomer 2,5-furandicarboxylic acid (FDCA) with water as the solvent. The results of catalytic experiments revealed that the Au3Pd1/ZrO2@HNTs-1.0CA catalyst exhibited excellent catalytic activity at 0.5 MPa O2, with a satisfactory FDCA yield of 99.5% and outstanding FDCA formation rate of 1057.9 mmol·g-1·h-1. The improved Ov concentration in the ZrO2 support enhanced the adsorption and activation ability of the catalyst for O2, and a higher Lewis acid concentration provided a stronger adsorption ability of the catalyst for reaction substrates. Besides, the synergistic effect of AuPd bimetallic nanoparticles steered the tandem oxidation of aldehyde and alcohol groups in HMF and accelerated the rate-determining step. More importantly, the relationship between the Ov concentration and catalytic performance also demonstrated that the enhanced catalytic activity for HMF oxidation was mainly attributed to the active interface of AuPd-ZrOx. This work offers fresh insights into rationally designing oxygen vacancy-driven strong interactions between the oxide support and noble nanoparticles for the catalytic upgrade of biomass platform chemicals.

20.
Proc Natl Acad Sci U S A ; 120(40): e2306673120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748073

RESUMO

Electrocatalytic nitrogen reduction is a challenging process that requires achieving high ammonia yield rate and reasonable faradaic efficiency. To address this issue, this study developed a catalyst by in situ anchoring interfacial intergrown ultrafine MoO2 nanograins on N-doped carbon fibers. By optimizing the thermal treatment conditions, an abundant number of grain boundaries were generated between MoO2 nanograins, which led to an increased fraction of oxygen vacancies. This, in turn, improved the transfer of electrons, resulting in the creation of highly active reactive sites and efficient nitrogen trapping. The resulting optimal catalyst, MoO2/C700, outperformed commercial MoO2 and state-of-the-art N2 reduction catalysts, with NH3 yield and Faradic efficiency of 173.7 µg h-1 mg-1cat and 27.6%, respectively, under - 0.7 V vs. RHE in 1 M KOH electrolyte. In situ X-ray photoelectron spectroscopy characterization and density functional theory calculation validated the electronic structure effect and advantage of N2 adsorption over oxygen vacancy, revealing the dominant interplay of N2 and oxygen vacancy and generating electronic transfer between nitrogen and Mo(IV). The study also unveiled the origin of improved activity by correlating with the interfacial effect, demonstrating the big potential for practical N2 reduction applications as the obtained optimal catalyst exhibited appreciable catalytic stability during 60 h of continuous electrolysis. This work demonstrates the feasibility of enhancing electrocatalytic nitrogen reduction by engineering grain boundaries to promote oxygen vacancies, offering a promising avenue for efficient and sustainable ammonia production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA