Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39246338

RESUMO

Chiral alpha-amino ketones have found extensive applications as functional molecules. A nickel-catalyzed, enantioselective, and fully intermolecular three-component 1,2-alkylacylation of N-acyl enamides has been realized with tertiary alkyl bromides and carboxylic acid-derived electrophiles as the coupling reagents. This reductive coupling strategy is operationally simple, exhibiting broad substrate scope and excellent functional group tolerance using readily available starting materials and allowing rapid access to structurally complex α-amino ketone derivatives in high enantioselectivity. A suitable chiral biimidazoline ligand together with additional chelation of the amide carbonyl group in a Ni alkyl intermediate facilitates the enantioselective control by suppressing the background reaction, accounting for the excellent enantioselectivity. Mechanistic studies indicated intermediacy of radical species.

2.
Angew Chem Int Ed Engl ; 63(1): e202312923, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37971168

RESUMO

Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG≠ (rac)=26.6-28.0 kcal/mol). The coupling reactions in each category proceeded with excellent enantioselectivity, regioselectivity, and Z/E selectivity under mild reaction conditions. Computational studies of the coupling of quinoline N-oxide system reveal that the reaction proceeds via initial oxidative cyclization of the 1,6-diyne to give a rhodacyclic intermediate, followed by σ-bond metathesis between the arene C-H bond and the Rh-C(vinyl) bond, with subsequent C-C reductive elimination being enantio-determining and turnover-limiting. The DFT-established mechanism is consistent with the experimental studies. The coupled products of quinoline N-oxides undergo facile visible light-induced intramolecular oxygen-atom transfer, affording chiral epoxides with complete axial-to-central chirality transfer.

3.
Front Neurosci ; 17: 1255755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881327

RESUMO

Spinal cord injury (SCI) is a catastrophic condition with few therapeutic options. Astaxanthin (AST), a natural nutritional supplement with powerful antioxidant activities, is finding its new application in the field of SCI. Here, we performed a systematic review to assess the neurological roles of AST in rats following SCI, and assessed the potential for clinical translation. Searches were conducted on PubMed, Embase, Cochrane Library, the Web of Science, China National Knowledge Infrastructure, WanFang data, Vip Journal Integration Platform, and SinoMed databases. Animal studies that evaluated the neurobiological roles of AST in a rat model of SCI were included. A total of 10 articles were included; most of them had moderate-to-high methodological quality, while the overall quality of evidence was not high. Generally, the meta-analyses revealed that rats treated with AST exhibited an increased Basso, Beattie, and Bresnahan (BBB) score compared with the controls, and the weighted mean differences (WMDs) between those two groups showed a gradual upward trend from days 7 (six studies, n = 88, WMD = 2.85, 95% CI = 1.83 to 3.87, p < 0.00001) to days 28 (five studies, n = 76, WMD = 6.42, 95% CI = 4.29 to 8.55, p < 0.00001) after treatment. AST treatment was associated with improved outcomes in spared white matter area, motor neuron survival, and SOD and MDA levels. Subgroup analyses indicated there were differences in the improvement of BBB scores between distinct injury types. The trial sequential analysis then firmly proved that AST could facilitate the locomotor recovery of rats following SCI. In addition, this review suggested that AST could modulate oxidative stress, neuroinflammation, neuron loss, and autophagy via multiple signaling pathways for treating SCI. Collectively, with a protective effect, good safety, and a systematic action mechanism, AST is a promising candidate for future clinical trials of SCI. Nonetheless, in light of the limitations of the included studies, larger and high-quality studies are needed for verification.

4.
Syst Rev ; 12(1): 177, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752580

RESUMO

BACKGROUND: Spinal cord injury (SCI) is one of the most disabling neurological conditions, afflicting thousands of human beings. Edaravone, a well-known reactive oxygen species scavenger, is expanding its new scope in field of SCI. The objective of this systematic review is to determine the neuroprotective effects and discuss the underlying mechanism of edaravone in management of SCI. METHODS: The systematic review will include the controlled studies evaluating the neurological roles of edaravone on experiment rat models following SCI. The primary outcome will be the 21-point Basso, Beattie, and Bresnahan locomotor rating scale. The secondary outcomes will include the preservation of white matter areas and malondialdehyde levels. Two researchers will independently search PubMed, Embase, Web of Science, Scopus and Cochrane Library from their inception date. Following study selection, data extraction, and assessment of methodological quality in included studies using the SYRCLE's RoB tool, data from eligible studies will be pooled and analyzed using random-effects models with RevMan 5.3 software. In case of sufficient data, subgroup analyses with respect to species, age, gender, injury characteristics, or administration details will be carried out to explore the factors modifying efficacy of edaravone. For exploring the appropriate dose of edaravone, a network meta-analysis approach will be conducted based on the Bayesian method. Importantly, the proposed mechanisms and changes of related molecules will be also extracted from included studies for comprehensively investigating the mechanisms underlying the neuroprotective effects of edaravone. DISCUSSION: In this study, we aim to quantitatively analyze the role of edaravone in locomotor recovery and tissue damage in SCI rat model. The efficacy of edaravone in distinct scenarios will be investigated by subgroup analyses, and we expect to predict the candidate dose that offers a superior treatment effect using network meta-analyses. Moreover, a comprehensive framework regarding the neuroprotective mechanisms behind edaravone will be constructed via a combination of systematic and traditional review. This study will bring implications for future preclinical studies and clinical applications of SCI. Nonetheless, in light of the anticipated limitations in animal experimental design and methodological quality, the results in this review should be interpreted with caution.


Assuntos
Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Edaravone/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Teorema de Bayes , Modelos Animais de Doenças , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Traumatismos da Medula Espinal/tratamento farmacológico , Literatura de Revisão como Assunto
5.
Front Neurosci ; 16: 946879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117612

RESUMO

Spinal cord injury (SCI) is a devastating condition with few treatment options. Metformin, a classical antidiabetic and antioxidant, has extended its application to experimental SCI treatment. Here, we performed a systematic review to evaluate the neurobiological roles of metformin for treating SCI in rats, and to assess the potential for clinical translation. PubMed, Embase, China National Knowledge Infrastructure, WanFang data, SinoMed, and Vip Journal Integration Platform databases were searched from their inception dates to October 2021. Two reviewers independently selected controlled studies evaluating the neurobiological roles of metformin in rats following SCI, extracted data, and assessed the quality of methodology and evidence. Pairwise meta-analyses, subgroup analyses and network analysis were performed to assess the roles of metformin in neurological function and tissue damage in SCI rats. Twelve articles were included in this systematic review. Most of them were of moderate-to-high methodological quality, while the quality of evidence from those studies was not high. Generally, Basso, Beattie, and Bresnahan scores were increased in rats treated with metformin compared with controls, and the weighted mean differences (WMDs) between metformin and control groups exhibited a gradual upward trend from the 3rd (nine studies, n = 164, WMD = 0.42, 95% CI = -0.01 to 0.85, P = 0.06) to the 28th day after treatment (nine studies, n = 136, WMD = 3.48, 95% CI = 2.04 to 4.92, P < 0.00001). Metformin intervention was associated with improved inclined plane scores, tissue preservation ratio and number of anterior horn motor neurons. Subgroup analyses indicated an association between neuroprotection and metformin dose. Network meta-analysis showed that 50 mg/kg metformin exhibited greater protection than 10 and 100 mg/kg metformin. The action mechanisms behind metformin were associated with activating adenosine monophosphate-activated protein kinase signaling, regulating mitochondrial function and relieving endoplasmic reticulum stress. Collectively, this review indicates that metformin has a protective effect on SCI with satisfactory safety and we demonstrate a rational mechanism of action; therefore, metformin is a promising candidate for future clinical trials. However, given the limitations of animal experimental methodological and evidence quality, the findings of this pre-clinical review should be interpreted with caution.

6.
Spine (Phila Pa 1976) ; 42(23): E1334-E1341, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338575

RESUMO

STUDY DESIGN: In vivo and in vitro experiments. OBJECTIVE: To illustrate the further molecular mechanism of Cx43-mediated osteoblastic differentiation of ligament cells. SUMMARY OF BACKGROUND DATA: Ossification of the posterior longitudinal ligament (OPLL) is one of the main causes of myelopathy in Asians, but its etiology has not been clarified. We have previously found the mechanical stress can upregulate Cx43 expression in ligament cells, which transduces mechanical signal to promote osteoblastic differentiation. METHODS: The posterior longitudinal ligaments were collected intraoperatively. Ligament fibroblasts were isolated and cultured, and an in vitro mechanical loading model was established. In vivo and in vitro expression levels of Cx43 protein were compared between OPLL and non-OPLL patients. The activation of nuclear factor (NF)-κB (p65) signal and related inflammatory responses were detected in ligament cells under mechanical loading. The mechanical stress-induced inflammatory response and osteoblastic differentiation of OPLL cells were investigated after the treatment with Cx43 siRNA or NFкB (p65) inhibitor. RESULTS: We first confirmed higher Cx43 levels in both in vivo ligament tissue from OPLL patients and in vitro cultured OPLL cells. We also found NFκB (p65) signal and related inflammatory response were activated by mechanical stimulation. The activation of NFκB (p65) signal was dependent upon Cx43, as its knockdown reduced signal. Moreover, treatment with Cx43 siRNA or NFкB (p65) inhibitor significantly decreased the mechanical-induced inflammation response, but partly attenuated mechanical-stimulated osteoblastic differentiation of OPLL cells. CONCLUSION: Cx43-mediated NFкB (p65) signal played an important role in mechanical stress-induced OPLL by transduction of mechanical signal, while giving rise to the activation of inflammatory response in ligament fibroblastsLevel of Evidence: N/A.


Assuntos
Diferenciação Celular , Conexina 43/metabolismo , Fibroblastos/fisiologia , NF-kappa B/metabolismo , Ossificação do Ligamento Longitudinal Posterior/etiologia , Transdução de Sinais , Estresse Fisiológico , Adulto , Fosfatase Alcalina/metabolismo , Células Cultivadas , Conexina 43/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Estresse Mecânico , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA