Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 827
Filtrar
1.
J Ethnopharmacol ; 331: 118305, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729536

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Coptidis rhizoma, first recorded in the "Shen Nong's Herbal Classic", is one of the traditional Chinese medicine (TCM) used to treat infectious diseases, with reputed effectiveness against oropharyngeal candidiasis (OPC). Studies have demonstrated the inhibitory properties of C. rhizoma (CRE) against Candida albicans, yet there is limited information available regarding its treatment mechanism for OPC. AIM OF THE STUDY: Our previous research has suggested that CRE can prevent the formation of C. albicans hyphae and their invasion of the oral mucosa, thereby exerting a therapeutic effect on OPC. Nevertheless, the precise therapeutic mechanisms remain incompletely understood. Previous studies have revealed that a receptor for globular heads of C1q (gC1qR), a crucial co-receptor of the epidermal growth factor receptor (EGFR), facilitates the EGFR-mediated internalization of C. albicans. Therefore, this study aims to investigate the potential mechanism of action of CRE and its primary component, berberine (BBR), in treating OPC by exploring their effects on the gC1qR-EGFR co-receptor. MATERIALS AND METHODS: To identify the chemical components of CRE, we utilized Ultra-high performance liquid chromatography in conjunction with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MSE), revealing the presence of at least 18 distinct components. To observe the therapeutic effects of CRE on OPC at the animal level, we employed hematoxylin and eosin staining, periodic acid-Schiff staining, scanning electron microscopy, and fungal load detection. Subsequently, we evaluated the anti-inflammatory properties of CRE and its main component, BBR, in treating OPC. This was achieved through enzyme-linked immunosorbent assay (ELISA) both at the animal and cellular levels. Additionally, we assessed the ability of C. albicans to disrupt the epithelial barrier of FaDu cells by studying the protective effects of BBR on the fusion barrier using the transwell assay. To further explore the underlying mechanisms, we analyzed the effects of BBR on the gC1qR-EGFR/extracellular signal-regulated kinase/c-Fos signaling pathway at the cellular level using qRT-PCR, western blotting, and immunofluorescence. Furthermore, we validated the effects of BBR on the gC1qR-EGFR co-receptor through ELISA, qRT-PCR, and western blotting. Finally, to confirm the outcomes observed at the cellular level, we validated the impact of CRE on the gC1qR-EGFR co-receptor in vivo using qRT-PCR, western blotting, and immunofluorescence. These comprehensive methods allowed us to gain a deeper understanding of the therapeutic mechanisms of CRE and BBR in treating OPC. RESULTS: Our findings indicate that CRE and its primary component, BBR, effectively alleviated the symptoms of OPC by modulating the gC1qR-EGFR co-receptor. The chemical composition of CRE and BBR was accurately identified using UPLC-Q/TOF-MSE. The gC1qR-EGFR co-receptor plays a crucial role in regulating downstream signaling pathways, emerging as a potential therapeutic target for OPC treatment. Through both in vitro and in vivo experiments, we explored the therapeutic potential of CRE and BBR in OPC. Additionally, we employed overexpression and silencing techniques to confirm that BBR can indeed influence the gC1qR-EGFR co-receptor and regulate the gC1qR-EGFR/extracellular signal-regulated kinase (ERK)/c-Fos signaling pathway, leading to improved OPC outcomes. Furthermore, the significance of CRE's effect on the gC1qR-EGFR co-receptor was validated in vivo. CONCLUSION: Our study demonstrates that CRE and its main component, BBR, can effectively alleviate OPC symptoms by targeting the gC1qR-EGFR heterodimer receptor. This discovery offers a promising new therapeutic approach for the treatment of OPC.

2.
Water Res ; 257: 121693, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38728785

RESUMO

Cyanobacterial harmful algal blooms (cyanoHABs) are becoming increasingly common in aquatic ecosystems worldwide. However, their heterogeneous distributions make it difficult to accurately estimate the total algae biomass and forecast the occurrence of surface cyanoHABs by using traditional monitoring methods. Although various optical instruments and remote sensing methods have been employed to monitor the dynamics of cyanoHABs at the water surface (i.e., bloom area, chlorophyll a), there is no effective in-situ methodology to monitor the dynamic change of cell density and integrated biovolume of algae throughout the water column. In this study, we propose a quantitative protocol for simultaneously measurements of multiple indicators (i.e., biovolume concentration, size distribution, cell density, and column-integrated biovolume) of cyanoHABs in water bodies by using the laser in-situ scattering and transmissometry (LISST) instrument. The accuracy of measurements of the biovolume and colony size of algae was evaluated and exceeded 95% when the water bloom was dominated by cyanobacteria. Furthermore, the cell density of cyanobacteria was well estimated based on total biovolume and mean cell volume measured by the instrument. Therefore, this methodology has the potential to be used for broader applications, not only to monitor the spatial and temporal distribution of algal biovolume concentration but also monitor the vertical distribution of cell density, biomass and their relationship with size distribution patterns. This provides new technical means for the monitoring and analysis of algae migration and early warning of the formation of cyanoHABs in lakes and reservoirs.

3.
Sci Rep ; 14(1): 10505, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714718

RESUMO

Metabolic syndrome (MetS) is closely related to cardiovascular and cerebrovascular diseases, and genetic predisposition is one of the main triggers for its development. To identify the susceptibility genes for MetS, we investigated the relationship between angiotensin-converting enzyme 2 (ACE2) single nucleotide polymorphisms (SNPs) and MetS in southern China. In total, 339 MetS patients and 398 non-MetS hospitalized patients were recruited. Four ACE2 polymorphisms (rs2074192, rs2106809, rs879922, and rs4646155) were genotyped using the polymerase chain reaction-ligase detection method and tested for their potential association with MetS and its related components. ACE2 rs2074192 and rs2106809 minor alleles conferred 2.485-fold and 3.313-fold greater risks of MetS in women. ACE2 rs2074192 and rs2106809 variants were risk factors for obesity, diabetes, and low-high-density lipoprotein cholesterolemia. However, in men, the ACE2 rs2074192 minor allele was associated with an approximately 0.525-fold reduction in MetS prevalence. Further comparing the components of MetS, ACE2 rs2074192 and rs2106809 variants reduced the risk of obesity and high triglyceride levels. In conclusion, ACE2 rs2074192 and rs2106809 SNPs were independently associated with MetS in a southern Chinese population and showed gender heterogeneity, which can be partially explained by obesity. Thus, these SNPs may be utilized as predictive biomarkers and molecular targets for MetS. A limitation of this study is that environmental and lifestyle differences, as well as genetic heterogeneity among different populations, were not considered in the analysis.


Assuntos
Enzima de Conversão de Angiotensina 2 , Predisposição Genética para Doença , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/epidemiologia , Enzima de Conversão de Angiotensina 2/genética , Feminino , Masculino , Pessoa de Meia-Idade , China/epidemiologia , Estudos de Casos e Controles , Alelos , Idoso , Adulto , Fatores de Risco , Peptidil Dipeptidase A/genética , Frequência do Gene , Genótipo
4.
Pest Manag Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742692

RESUMO

BACKGROUND: Bombyx mori nuclear polyhedrosis virus (BmNPV), as a typical baculovirus, is the primary pathogen that infects the silkworm B. mori, a lepidopteran species. Owing to the high biological safety of BmNPV in infecting insects, it is commonly utilized as a biological insecticide for pest control. Apoptosis is important in the interaction between the host and pathogenic microorganisms. MicroRNAs (miRNAs) influence immune responses and promote stability of the immune system via apoptosis. Therefore, the study of apoptosis-related miRNA in silkworms during virus infection can not only provide support for standardizing the prevention and control of diseases and insect pests, but also reduce the economic losses to sericulture caused by the misuse of biological pesticides. RESULTS: Through transcriptome sequencing, we identified a miRNA, miR-31-5p, and demonstrated that it can inhibit apoptosis in silkworm cells and promote the proliferation of BmNPV in BmE-SWU1 cells. We identified a target gene of miR-31-5p, B. mori cytochrome P450 9e2 (BmCYP9e2), and demonstrated that it can promote apoptosis in silkworm cells and inhibit the proliferation of BmNPV. Moreover, we constructed transgenic silkworm strains with miR-31-5p knockout and confirmed that they can inhibit the proliferation of BmNPV. CONCLUSION: These data indicate that miR-31-5p may exert functions of inhibiting apoptosis and promoting virus proliferation by regulating BmCYP9e2. The findings demonstrate how miRNAs influence host cell apoptosis and how they are involved in the host immune system response to viruses, providing important insights into the applications of biological insecticides for pest control. © 2024 Society of Chemical Industry.

5.
bioRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712039

RESUMO

Neuroblastoma is a common pediatric cancer, where preclinical studies suggest that a mesenchymal-like gene expression program contributes to chemotherapy resistance. However, clinical outcomes remain poor, implying we need a better understanding of the relationship between patient tumor heterogeneity and preclinical models. Here, we generated single-cell RNA-seq maps of neuroblastoma cell lines, patient-derived xenograft models (PDX), and a genetically engineered mouse model (GEMM). We developed an unsupervised machine learning approach ('automatic consensus nonnegative matrix factorization' (acNMF)) to compare the gene expression programs found in preclinical models to a large cohort of patient tumors. We confirmed a weakly expressed, mesenchymal-like program in otherwise adrenergic cancer cells in some pre-treated high-risk patient tumors, but this appears distinct from the presumptive drug-resistance mesenchymal programs evident in cell lines. Surprisingly however, this weak-mesenchymal-like program was maintained in PDX and could be chemotherapy-induced in our GEMM after only 24 hours, suggesting an uncharacterized therapy-escape mechanism. Collectively, our findings improve the understanding of how neuroblastoma patient tumor heterogeneity is reflected in preclinical models, provides a comprehensive integrated resource, and a generalizable set of computational methodologies for the joint analysis of clinical and pre-clinical single-cell RNA-seq datasets.

6.
Cogn Neurodyn ; 18(2): 485-502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699615

RESUMO

Glutamate (Glu) is a predominant excitatory neurotransmitter that acts on glutamate receptors to transfer signals in the central nervous system. Abnormally elevated extracellular glutamate levels is closely related to the generation and transition of epileptic seizures. However, there lacks of investigation regarding the role of extracellular glutamate homeostasis dysregulated by astrocyte in neuronal epileptic discharges. According to this, we propose a novel neuron-astrocyte computational model (NAG) by incorporating extracellular Glu concentration dynamics from three aspects of regulatory mechanisms: (1) the Glu uptake through astrocyte EAAT2; (2) the binding and release Glu via activating astrocyte mGluRs; and (3) the Glu free diffusion in the extracellular space. Then the proposed model NAG is analyzed theoretically and numerically to verify the effect of extracellular Glu homeostasis dysregulated by such three regulatory mechanisms on neuronal epileptic discharges. Our results demonstrate that the neuronal epileptic discharges can be aggravated by the downregulation expression of EAAT2, the aberrant activation of mGluRs, and the elevated Glu levels in extracellular micro-environment; as well as various discharge states (including bursting, mixed-mode spiking, and tonic firing) can be transited by their combination. Furthermore, we find that such factors can also alter the bifurcation threshold for the generation and transition of epileptic discharges. The results in this paper can be helpful for researchers to understand the astrocyte role in modulating extracellular Glu homeostasis, and provide theoretical basis for future related experimental studies.

7.
ACS Biomater Sci Eng ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736179

RESUMO

Disruption of the symbiosis of extra/intratumoral metabolism is a good strategy for treating tumors that shuttle resources from the tumor microenvironment. Here, we report a precision treatment strategy for enhancing pyruvic acid and intratumoral acidosis to destroy tumoral metabolic symbiosis to eliminate tumors; this approach is based on PEGylated gold and lactate oxidase-modified aminated dendritic mesoporous silica with lonidamine and ferrous sulfide loading (PEG-Au@DMSNs/FeS/LND@LOX). In the tumor microenvironment, LOX oxidizes lactic acid to produce pyruvate, which represses tumor cell proliferation by inhibiting histone gene expression and induces ferroptosis by partial histone monoubiquitination. In acidic tumor conditions, the nanoparticles release H2S gas and Fe2+ ions, which can inhibit catalase activity to promote the Fenton reaction of Fe2+, resulting in massive ·OH production and ferroptosis via Fe3+. More interestingly, the combination of H2S and LND (a monocarboxylic acid transporter inhibitor) can cause intracellular acidosis by lactate, and protons overaccumulate in cells. Multiple intracellular acidosis is caused by lactate-pyruvate axis disorders. Moreover, H2S provides motive power to intensify the shuttling of nanoparticles in the tumor region. The findings confirm that this nanomedicine system can enable precise antitumor effects by disrupting extra/intratumoral metabolic symbiosis and inducing ferroptosis and represents a promising active drug delivery system candidate for tumor treatment.

8.
Mol Nutr Food Res ; 68(9): e2300704, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38656560

RESUMO

SCOPE: This study investigates the potential of glutamine to mitigate intestinal mucositis and dysbiosis caused by the chemotherapeutic agent 5-fluorouracil (5-FU). METHODS AND RESULTS: Over twelve days, Institute of Cancer Research (ICR) mice are given low (0.5 mg kg-1) or high (2 mg kg-1) doses of L-Glutamine daily, with 5-FU (50 mg kg-1) administered between days six and nine. Mice receiving only 5-FU exhibited weight loss, diarrhea, abnormal cell growth, and colonic inflammation, correlated with decreased mucin proteins, increased endotoxins, reduced fecal short-chain fatty acids, and altered gut microbiota. Glutamine supplementation counteracted these effects by inhibiting the Toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) pathway, modulating nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) oxidative stress proteins, and increasing mammalian target of rapamycin (mTOR) levels, thereby enhancing microbial diversity and protecting intestinal mucosa. CONCLUSIONS: These findings underscore glutamine's potential in preventing 5-FU-induced mucositis by modulating gut microbiota and inflammation pathways.


Assuntos
Fluoruracila , Microbioma Gastrointestinal , Glutamina , Mucosa Intestinal , Mucosite , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Fluoruracila/efeitos adversos , Glutamina/farmacologia , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos ICR , Masculino , Receptor 4 Toll-Like/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Antimetabólitos Antineoplásicos/efeitos adversos , Heme Oxigenase-1/metabolismo
9.
RSC Med Chem ; 15(4): 1236-1246, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665837

RESUMO

Candida albicans is the most common fungal pathogen associated with human opportunistic infections. Invasive infections caused by C. albicans are becoming increasingly serious. However, with the rising incidence of fungal infection, many fungi are resistant to commonly used drugs. Therefore, there is an urgent need for exploring new anti-fungal drugs that fungi are not resistant to. A series of novel azole derivatives linked to indole/indoline moieties were prepared, and in vitro antifungal activity evaluated. All compounds combined with FLC showed excellent activity against drug-resistant C. albicans with low toxicity. A preliminary mechanistic study indicated that S1 combined with FLC could inhibit the formation of C. albicans biofilms as well as destroy the integrity of cell-membrane structure and mitochondrial function. S1 could be considered a new fungal agent for further study.

10.
Front Plant Sci ; 15: 1367680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633455

RESUMO

Increasing occurrences of Microcystis surface scum have been observed in the context of global climate change and the increase in anthropogenic pollution, causing deteriorating water quality in aquatic ecosystems. Previous studies on scum formation mainly focus on the buoyancy-driven floating process of larger Microcystis colonies, neglecting other potential mechanisms. To study the non-buoyancy-driven rapid flotation of Microcystis, we here investigate the floating processes of two strains of single-cell species (Microcystis aeruginosa and Microcystis wesenbergii), which are typically buoyant, under light conditions (150 µmol photons s-1 m-2). Our results showed that M. wesenbergii exhibited fast upward migration and formed surface scum within 4 hours, while M. aeruginosa did not form visible scum throughout the experiments. To further explore the underlying mechanism of these processes, we compared the dissolved oxygen (DO), extracellular polymeric substance (EPS) content, and colony size of Microcystis in different treatments. We found supersaturated DO and the formation of micro-bubbles (50-200 µm in diameter) in M. wesenbergii treatments. M. aeruginosa produces bubbles in small quantities and small sizes. Additionally, M. wesenbergii produced more EPS and tended to aggregate into larger colonies. M. wesenbergii had much more derived-soluble extracellular proteins and polysaccharides compared to M. aeruginosa. At the same time, M. wesenbergii contains abundant functional groups, which was beneficial to the formation of agglomerates. The surface scum observed in M. wesenbergii is likely due to micro-bubbles attaching to the surface of cell aggregates or becoming trapped within the colony. Our study reveals a species-specific mechanism for the rapid floatation of Microcystis, providing novel insights into surface scum formation as well as succession of cyanobacterial species.

11.
BMC Med Genomics ; 17(1): 96, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650036

RESUMO

BACKGROUND: The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients. METHODS: Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted. RESULTS: The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation. CONCLUSION: Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.


Assuntos
Linfangioma Cístico , Análise de Célula Única , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Linfangioma Cístico/genética , Linfangioma Cístico/metabolismo , Linfangioma Cístico/patologia , Feminino , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Análise de Sequência de RNA , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Transcriptoma
12.
medRxiv ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38633778

RESUMO

Grade IV glioma, formerly known as glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor, and its treatment remains challenging in part due to extensive interpatient heterogeneity in disease driving mechanisms and lack of prognostic and predictive biomarkers. Using mechanistic inference of node-edge relationship (MINER), we have analyzed multiomics profiles from 516 patients and constructed an atlas of causal and mechanistic drivers of interpatient heterogeneity in GBM (gbmMINER). The atlas has delineated how 30 driver mutations act in a combinatorial scheme to causally influence a network of regulators (306 transcription factors and 73 miRNAs) of 179 transcriptional "programs", influencing disease progression in patients across 23 disease states. Through extensive testing on independent patient cohorts, we share evidence that a machine learning model trained on activity profiles of programs within gbmMINER significantly augments risk stratification, identifying patients who are super-responders to standard of care and those that would benefit from 2 nd line treatments. In addition to providing mechanistic hypotheses regarding disease prognosis, the activity of programs containing targets of 2 nd line treatments accurately predicted efficacy of 28 drugs in killing glioma stem-like cells from 43 patients. Our findings demonstrate that interpatient heterogeneity manifests from differential activities of transcriptional programs, providing actionable strategies for mechanistically characterizing GBM from a systems perspective and developing better prognostic and predictive biomarkers for personalized medicine.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38568776

RESUMO

Dietary habits have been proven to have an impact on the microbial composition and health of the human gut. Over the past decade, researchers have discovered that gut microbiota can use nutrients to produce metabolites that have major implications for human physiology. However, there is no comprehensive system that specifically focuses on identifying nutrient deficiencies based on gut microbiota, making it difficult to interpret and compare gut microbiome data in the literature. This study proposes an analytical platform, NURECON, that can predict nutrient deficiency information in individuals by comparing their metagenomic information to a reference baseline. NURECON integrates a next-generation bacterial 16S rRNA analytical pipeline (QIIME2), metabolic pathway prediction tools (PICRUSt2 and KEGG), and a food compound database (FooDB) to enable the identification of missing nutrients and provide personalized dietary suggestions. Metagenomic information from total number of 287 healthy subjects was used to establish baseline microbial composition and metabolic profiles. The uploaded data is analyzed and compared to the baseline for nutrient deficiency assessment. Visualization results include gut microbial composition, related enzymes, pathways, and nutrient abundance. NURECON is a user-friendly online platform that provides nutritional advice to support dietitians' research or menu design.


Assuntos
Dieta , Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Metagenoma , Necessidades Nutricionais
14.
Int J Biol Macromol ; 268(Pt 2): 131819, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38688334

RESUMO

The Notch signaling pathway is important in cell cycle regulation and cell proliferation. The transcriptional repressor Suppressor of Hairless [Su(H)] is a molecular switch for downstream target genes of the Notch signaling pathway but the regulatory mechanism of the Su(H) gene in the cell cycle is unclear. We determined the function of the Notch signaling pathway and Bombyx mori Su(H) [BmSu(H)] in the regulation of the silkworm cell cycle. Inhibition of Notch signaling promoted the replication of DNA in silkworm gland cells and expression of the BmSu(H) gene was significantly reduced. Overexpression of the BmSu(H) gene inhibited DNA replication and cell proliferation of silkworm cells, whereas knockout of the BmSu(H) gene promoted DNA replication and cell proliferation. Knockout of the BmSu(H) in silkworms improved the efficiency of silk gland cell endoreplication and increased important economic traits. We demonstrated that BmSu(H) protein can directly bind to the promoters of BmCyclinA, BmCyclinE and BmCDK1 genes, inhibiting or promoting their transcription at the cell and individual level. This study identified molecular targets for genetic improvement of the silkworm and also provided insights into the regulatory mechanism of the cell cycle.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38687388

RESUMO

Despite the excellent performance of Nb3O7(OH) in dye-sensitized solar cells and catalysis, its charge separation, transport, and structural properties remain poorly understood. Herein, the Nb3O7(OH) nanorods were prepared, and their structural characteristics, optoelectronic properties, and carrier mobility were also analyzed and investigated through a series of complex characterizations. Theoretical prediction suggested that the exciton binding energy of Nb3O7(OH) could be as high as 100.49 meV. The temperature-dependent photoluminescence (PL) of Nb3O7(OH) nanorods revealed two activation energies, and a higher proportion of long-lived components observed in the photoluminescence decay indicated effective electron trapping. That is, two energy states were present, hindering photogenerated charge recombination and promoting photocatalytic action. Current-voltage characteristics of the Nb3O7(OH) nanorod film were analyzed, revealing an ultrahigh carrier mobility of ∼310 cm2/V·s, ensuring fast and efficient electron transfer. Furthermore, Nb3O7(OH) nanorods were employed to reduce CO2, resulting in the effective production of CO and CH4. Overall, considering the presence of hydroxyl pairs on the surface of Nb3O7(OH), which facilitate the formation of the frustrated Lewis acid-base pairs and the activation of CO2, together with its effective electron trapping and charge transport, give Nb3O7(OH) nanorods a promising potential for CO2 reduction.

16.
Chemosphere ; 359: 142149, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685334

RESUMO

Global climate change as well as human activities have been reported to increase the frequency and severity of both salinization and harmful algal blooms (HABs) in many freshwater systems, but their co-effect on benthic invertebrates has rarely been studied. This study simultaneously examined the joint toxicity of salinity and different cyanobacterial diets on the behavior, development, select biomarkers, and partial life cycle of Chironomus pallidivittatus (Diptera). High concentrations of salts (e.g., 1 g/L Ca2+ and Mg2+) and toxic Microcystis had synergistic toxicity, inhibiting development, burrowing ability and causing high mortality of C. pallidivittatus, especially for the Mg2+ treatment, which caused around 90% death. Low Ca2+ concentration (e.g., 0.01 g/L) promoted larval burrowing ability and inhibited toxin accumulation, which increased the tolerance of Chironomus to toxic Microcystis. However, low Mg2+ concentration (e.g., 0.01 g/L) was shown to inhibit the behavior, development and increase algal toxicity to Chironomus. Toxic Microcystis resulted in microcystin (MC) accumulation, inhibited the burrowing ability of larvae, and increased the proportion of male adults (>50%). The combined toxicity level from low to high was verified by the weight of evidence and the grey TOPSIS model, which integrated five lines of evidence to increase the risk assessment accuracy and efficiency. This is the first study that provided insights into ecological risk arising from the joint effect of salinity and harmful algae on benthic organisms. We suggest that freshwater salinization and HABs should be considered together when assessing ecological threats that arise from external stress.

17.
J Food Drug Anal ; 32(1): 1-20, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526593

RESUMO

Liver fibrosis occurs due to injury or inflammation, which results in the excessive production of collagen and the formation of fibrotic scar tissue that impairs liver function. Despite the limited treatment options available, freshwater clams may hold promise in the treatment of liver fibrosis. In this study, we demonstrated the effects of ethanol extract of freshwater clam (FCE), ethyl acetate extract of FCE (EA-FCE), and trans-2-nonadecyl-4-(hydroxymethyl)-1,3-dioxolane (TNHD) on liver fibrosis induced by dimethylnitrosamine (DMN). Administration of FCE and TNHD alleviated liver injury, including tissue damage, necrosis, inflammation scores, fibrosis scores, serum enzymes, and triglyceride levels. Furthermore, we analyzed the expression of fibrosis-related proteins, such as α-smooth muscle actin (α-SMA) and transforming growth factor (TGF-ß), as well as the hydroxyproline content, which decreased after treatment with FCE and TNHD. Animal experiments revealed that FCE and TNHD can reduce liver fibrosis by inhibiting cytokines that activate stellate cells and decreasing extracellular matrix (ECM) secretion. Cell experiments have shown that TNHD inhibits the MAPK/Smad signaling pathway and TGF-ß1 activation, resulting in a reduction in the expression of fibrosis-related proteins. Therefore, freshwater clam extracts, particularly TNHD, may have potential therapeutic and preventive effects for the amelioration of liver fibrosis.


Assuntos
Bivalves , Dimetilnitrosamina , Dioxolanos , Animais , Dimetilnitrosamina/toxicidade , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Bivalves/genética , Inflamação
18.
J Agric Food Chem ; 72(13): 6833-6849, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517334

RESUMO

Although cholesterol plays a key role in many physiological processes, its dysregulation can lead to several metabolic diseases. Statins are a group of drugs widely used to lower cholesterol levels and cardiovascular risk but may lead to several side effects in some patients. Therefore, the development of a plant-based therapeutic adjuvant with cholesterol-lowering activity is desirable. The maintenance of cholesterol homeostasis encompasses multiple steps, including biosynthesis and metabolism, uptake and transport, and bile acid metabolism; issues arising in any of these processes could contribute to the etiology of cholesterol-related diseases. An increasing body of evidence strongly indicates the benefits of phytochemicals for cholesterol regulation; traditional Chinese medicines prove beneficial in some disease models, although more scientific investigations are needed to confirm their effectiveness. One of the main functions of cholesterol is bile acid biosynthesis, where most bile acids are recycled back to the liver. The composition of bile acid is partly modulated by gut microbes and could be harmful to the liver. In this regard, the reshaping effect of phytochemicals on gut microbiota has been widely reported in the literature for its significance. Therefore, we reviewed studies conducted over the past 5 years elucidating the regulatory effects of phytochemicals or herbal medicines on cholesterol metabolism. In addition, their effects on the recomposition of gut microbiota and bile acid metabolism due to modulation are discussed. This review aims to provide novel insights into the treatment of cholesterol dysregulation and the anticipated development of natural-based compounds in the near and far future.


Assuntos
Colesterol , Fígado , Humanos , Colesterol/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/metabolismo , Ácidos e Sais Biliares/metabolismo
19.
Redox Biol ; 71: 103100, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484644

RESUMO

Th2-high asthma is characterized by elevated levels of type 2 cytokines, such as interleukin 13 (IL-13), and its prevalence has been increasing worldwide. Ferroptosis, a recently discovered type of programmed cell death, is involved in the pathological process of Th2-high asthma; however, the underlying mechanisms remain incompletely understood. In this study, we demonstrated that the serum level of malondialdehyde (MDA), an index of lipid peroxidation, positively correlated with IL-13 level and negatively correlated with the predicted forced expiratory volume in 1 s (FEV1%) in asthmatics. Furthermore, we showed that IL-13 facilitates ferroptosis by upregulating of suppressor of cytokine signaling 1 (SOCS1) through analyzing immortalized airway epithelial cells, human airway organoids, and the ovalbumin (OVA)-challenged asthma model. We identified that signal transducer and activator of transcription 6 (STAT6) promotes the transcription of SOCS1 upon IL-13 stimulation. Moreover, SOCS1, an E3 ubiquitin ligase, was found to bind to solute carrier family 7 member 11 (SLC7A11) and catalyze its ubiquitinated degradation, thereby promoting ferroptosis in airway epithelial cells. Last, we found that inhibiting SOCS1 can decrease ferroptosis in airway epithelial cells and alleviate airway hyperresponsiveness (AHR) in OVA-challenged wide-type mice, while SOCS1 overexpression exacerbated the above in OVA-challenged IL-13-knockout mice. Our findings reveal that the IL-13/STAT6/SOCS1/SLC7A11 pathway is a novel molecular mechanism for ferroptosis in Th2-high asthma, confirming that targeting ferroptosis in airway epithelial cells is a potential therapeutic strategy for Th2-high asthma.


Assuntos
Asma , Interleucina-13 , Animais , Humanos , Camundongos , Sistema y+ de Transporte de Aminoácidos , Asma/genética , Asma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Ovalbumina/uso terapêutico , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/uso terapêutico , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Células Th2/metabolismo , Células Th2/patologia
20.
ACS Omega ; 9(9): 10253-10266, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463297

RESUMO

Inflammatory bowel disease alters the gut microbiota, causes defects in mucosal barrier function, and leads to dysregulation of the immune response to microbial stimulation. This study investigated and compared the efficacy of a candidate probiotic strain, Bacillus coagulans BC198, and its heat-killed form in treating dextran sulfate sodium-induced colitis. Both live and heat-killed B. coagulans BC198 increased gut barrier-associated protein expression, reduced neutrophil and M1 macrophage infiltration of colon tissue, and corrected gut microbial dysbiosis induced by colitis. However, only live B. coagulans BC198 could alleviate the general symptoms of colitis, prevent colon shortening, and suppress inflammation and tissue damage. At the molecular level, live B. coagulans BC198 was able to inhibit Th17 cells while promoting Treg cells in mice with colitis, reduce pro-inflammatory MCP-1 production, and increase anti-inflammatory IL-10 expression in the colonic mucosa. The live form of B. coagulans BC198 functioned more effectively than the heat-killed form in ameliorating colitis by enhancing the anti-inflammatory response and promoting Treg cell accumulation in the colon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA