Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Front Immunol ; 15: 1419683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044812

RESUMO

The lack of diagnostic markers limits the window of effectiveness for rheumatoid arthritis (RA) therapies. Here, we isolated exosomes of serum samples from four distinct groups RA patients, according to disease activity and with/without medication. Then, total RNA of exosomes was extracted for whole-transcriptome sequencing. Focusing on lncRNA sequencing, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed. We found that the number of upregulated lncRNAs were significantly higher than that of downregulated lncRNAs in each four RA groups. And most importantly, we identified two specific lncRNAs from differentially expressed lncRNAs, TCONS_I2_00013502 (up-regulated) and ENST00000363624 (down-regulated) in RA. Receiver Operating Characteristic (ROC) curve analysis showed that the two lncRNAs were promising biomarkers for RA diagnosis. These findings highlight lncRNAs of the serum exosome are important biomarkers and provide application potential for diagnosis of RA.


Assuntos
Artrite Reumatoide , Biomarcadores , Exossomos , RNA Longo não Codificante , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/genética , Artrite Reumatoide/sangue , Humanos , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , Exossomos/genética , Exossomos/metabolismo , Biomarcadores/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Adulto , Curva ROC , Idoso
2.
Cell Commun Signal ; 22(1): 376, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39061070

RESUMO

Acute kidney injury (AKI) is closely related to lysosomal dysfunction and ferroptosis in renal tubular epithelial cells (TECs), for which effective treatments are urgently needed. Although selenium nanoparticles (SeNPs) have emerged as promising candidates for AKI therapy, their underlying mechanisms have not been fully elucidated. Here, we investigated the effect of SeNPs on hypoxia/reoxygenation (H/R)-induced ferroptosis and lysosomal dysfunction in TECs in vitro and evaluated their efficacy in a murine model of ischemia/reperfusion (I/R)-AKI. We observed that H/R-induced ferroptosis was accompanied by lysosomal Fe2+ accumulation and dysfunction in TECs, which was ameliorated by SeNPs administration. Furthermore, SeNPs protected C57BL/6 mice against I/R-induced inflammation and ferroptosis. Mechanistically, we found that lysosomal Fe2+ accumulation and ferroptosis were associated with the excessive activation of NCOA4-mediated ferritinophagy, a process mitigated by SeNPs through the upregulation of X-box binding protein 1 (XBP1). Downregulation of XBP1 promoted ferritinophagy and partially counteracted the protective effects of SeNPs on ferroptosis inhibition in TECs. Overall, our findings revealed a novel role for SeNPs in modulating ferritinophagy, thereby improving lysosomal function and attenuating ferroptosis of TECs in I/R-AKI. These results provide evidence for the potential application of SeNPs as therapeutic agents for the prevention and treatment of AKI.


Assuntos
Ferroptose , Nanopartículas , Traumatismo por Reperfusão , Selênio , Proteína 1 de Ligação a X-Box , Animais , Humanos , Masculino , Camundongos , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Autofagia/efeitos dos fármacos , Ferritinas/metabolismo , Ferroptose/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Selênio/farmacologia , Selênio/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética
3.
Reprod Biol ; 24(2): 100894, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776742

RESUMO

Varicocele (VC) is a common cause of infertility in men. Pathophysiological changes caused by VC, such as testicular hypoxia, high temperatures, oxidative stress, abnormal reproductive hormones, and Cd accumulation, can induce autophagy, thus affecting the reproductive function in patients with this condition. Autophagy regulators can be classified as activators or inhibitors. Autophagy activators upregulate autophagy, reduce the damage to the testis and epididymis, inhibit spermatogenic cell apoptosis, and protect fertility. In contrast, autophagy inhibitors block autophagy and aggravate the damage to the reproductive functions. Therefore, elucidating the role of autophagy in the occurrence, development, and regulation of VC may provide additional therapeutic options for men with infertility and VC. In this review, we briefly describe the progress made in autophagy research in the context of VC.


Assuntos
Autofagia , Varicocele , Autofagia/fisiologia , Varicocele/complicações , Masculino , Humanos , Animais , Infertilidade Masculina/etiologia , Testículo
4.
J Cell Mol Med ; 28(1): e18009, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882107

RESUMO

The complex interplay between tumour cells and the tumour microenvironment (TME) underscores the necessity for gaining comprehensive insights into disease progression. This study centres on elucidating the elusive the elusive role of endothelial cells within the TME of head and neck squamous cell carcinoma (HNSCC). Despite their crucial involvement in angiogenesis and vascular function, the mechanistic diversity of endothelial cells among HNSCC patients remains largely uncharted. Leveraging advanced single-cell RNA sequencing (scRNA-Seq) technology and the Scissor algorithm, we aimed to bridge this knowledge gap and illuminate the intricate interplay between endothelial cells and patient prognosis within the context of HNSCC. Here, endothelial cells were categorized into Scissorhigh and Scissorlow subtypes. We identified Scissor+ endothelial cells exhibiting pro-tumorigenic profiles and constructed a prognostic risk model for HNSCC. Additionally, four biomarkers also were identified by analysing the gene expression profiles of patients with HNSCC and a prognostic risk prediction model was constructed based on these genes. Furthermore, the correlations between endothelial cells and prognosis of patients with HNSCC were analysed by integrating bulk and single-cell sequencing data, revealing a close association between SHSS and the overall survival (OS) of HNSCC patients with malignant endothelial cells. Finally, we validated the prognostic model by RT-qPCR and IHC analysis. These findings enhance our comprehension of TME heterogeneity at the single-cell level and provide a prognostic model for HNSCC.


Assuntos
Células Endoteliais , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Algoritmos , Carcinogênese , Microambiente Tumoral
5.
Stem Cell Res Ther ; 14(1): 211, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605271

RESUMO

BACKGROUND: The efficacy of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation in treating systemic lupus erythematosus (SLE) has been confirmed by small-scale clinical trials. However, these trials focused on severe or refractory SLE, while few studies focused on mild SLE. Therefore, this study focused on the therapeutic effects of hUC-MSC transplantation in early-stage or mild MRL/lpr lupus model mice. METHODS: Commercially available hUC-MSCs were transplanted into 8-week-old MRL/lpr mice by tail vein injection. Flow cytometry was used to analyze B cells and their subsets in the peripheral blood. Further, plasma inflammatory factors, autoantibodies, and plasma biochemical indices were detected using protein chip technology and ELISA kits. In addition, pathological staining and immunofluorescence were performed to detect kidney injury in mice. RESULTS: hUC-MSC transplantation did not affect the mice's body weight, and both middle and high dose hUC-MSC transplantation (MD and HD group) actually reduced spleen weight. hUC-MSC transplantation significantly decreased the proportion of plasmablasts (PB), IgG1- PB, IgG1+ PB, IgG1+ memory B (MB) cells, IgG1+ DN MB, and IgG1+ SP MB cells. The hUC-MSC transplantation had significantly reduced plasma levels of inflammatory factors, such as TNF-α, IFN-γ, IL-6, and IL-13. Pathological staining showed that the infiltration of glomerular inflammatory cells was significantly reduced and that the level of glomerular fibrosis was significantly alleviated in hUC-MSC-transplanted mice. Immunofluorescence assays showed that the deposition of IgG and IgM antibodies in the kidneys of hUC-MSC-transplanted mice was significantly lower than in the control. CONCLUSION: hUC-MSC transplantation could inhibit the proliferation and differentiation of peripheral blood B cells in the early-stage of MRL/lpr mice, thereby alleviating the plasma inflammatory environment in mice, leading to kidney injury remission. The study provides a new and feasible strategy for SLE treatment.


Assuntos
Transplante de Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Fatores Imunológicos , Imunoglobulina G , Rim
6.
Front Pharmacol ; 14: 1093442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998610

RESUMO

Background: This study compared the efficacy and safety of sequential immunosuppressive therapy in patients with non-end-stage IgA nephropathy (IgAN) with Lee's classification of IV ∼ V and provided evidence for the use of immunotherapy in patients with severe IgAN. Methods: We retrospectively analyzed the clinical data of patients with Lee's IV ∼ V non-end-stage IgA nephropathy. Results: 436 patients were diagnosed with IgAN, and 98 patients who met the inclusion criteria were included in this retrospective study. Of these, 17 were in the supportive care group, 20 in the P group (prednisone-only), 35 in P + CTX group (the prednisone combined with cyclophosphamide followed by mycophenolate mofetil), and 26 in the P + MMF group (prednisone combined with mycophenolate mofetil). The four groups showed differences in the segmental glomerulosclerosis score and the proportion of patients with Lee's grade IV (p < 0.05), but no differences in other indicators. Compared with the baseline values, urine protein-to-creatinine ratio (PCR) significantly decreased and serum albumin increased (p < 0.05), but there was no significant difference between the groups. The estimated Glomerular Filtration Rate (eGFR) of the P, P + MMF, and P + CTX groups were higher than that of the supportive care group at the 6th and 24th month after treatment (all p < 0.05). At the 24th month, the eGFR in the P + CTX group was higher than that in the P + MMF group (p < 0.05). The effective remission rate of the P + CTX group was higher than that of the supportive care group (p < 0.05). At 12 months, the effective remission rate of the P group was higher than that of the supportive care group (p < 0.05). At the 24th month, there was no significant difference in the effective remission rates among the three groups (P, P + MMF, and P + CTX). Nine patients with severe IgA nephropathy reached the endpoint. Conclusion: This study showed that immunosuppressive therapy insevere IgAN patient scan effectively reduce urinary protein, increase albumin, and protect renal function in the early stages of IgAN. P + CTX is the most commonly used, which has a high effective remission rate of urine protein and a low incidence of end-point events.

7.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769347

RESUMO

Cisplatin, a widely used anticancer agent, can cause nephrotoxicity, including both acute kidney injury (AKI) and chronic kidney diseases, by accumulating in renal tubular epithelial cells (TECs). Mitochondrial pathology plays an important role in the pathogenesis of AKI. Based on the regulatory role of transcription factor EB (TFEB) in mitochondria, we investigated whether TFEB is involved in cisplatin-induced TEC damage. The results show that the expression of TFEB decreased in a concentration-dependent manner in both mouse kidney tissue and HK-2 cells when treated with cisplatin. A knockdown of TFEB aggravated cisplatin-induced renal TEC injury, which was partially reversed by TFEB overexpression in HK-2 cells. It was further observed that the TFEB knockdown also exacerbated cisplatin-induced mitochondrial damage in vitro, and included the depolarization of membrane potential, mitochondrial fragmentation and swelling, and the production of reactive oxygen species. In contrast, TFEB overexpression alleviated cisplatin-induced mitochondrial damage in TECs. These findings suggest that decreased TFEB expression may be a key mechanism of mitochondrial dysfunction in cisplatin-induced AKI, and that upregulation of TFEB has the potential to act as a therapeutic target to alleviate mitochondrial dysfunction and cisplatin-induced TEC injury. This study is important for developing therapeutic strategies to manipulate mitochondria through TFEB to delay AKI progression.


Assuntos
Injúria Renal Aguda , Cisplatino , Camundongos , Animais , Cisplatino/toxicidade , Cisplatino/metabolismo , Apoptose , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL
8.
Front Immunol ; 13: 1007579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341323

RESUMO

Animal models play an indispensable role in the study of human diseases. However, animal models of different diseases do not fully mimic the complex internal environment of humans. Immunodeficient mice are deficient in certain genes and do not express these or show reduced expression in some of their cells, facilitating the establishment of humanized mice and simulation of the human environment in vivo. Here, we summarize the developments in immunodeficient mice, from the initial nude mice lacking T lymphocytes to NOD/SCID rgnull mice lacking T, B, and NK cell populations. We describe existing humanized immune system mouse models based on immunodeficient mice in which human cells or tissues have been transplanted to establish a human immune system, including humanized-peripheral blood mononuclear cells (Hu-PBMCs), humanized hematopoietic stem cells (Hu-HSCs), and humanized bone marrow, liver, thymus (Hu-BLT) mouse models. The different methods for their development involve varying levels of complexity and humanization. Humanized mice are widely used in the study of various diseases to provide a transitional stage for clinical research. However, several challenges persist, including improving the efficiency of reconstructing the human B cell immune response, extending lifespan, improving the survival rate of mice to extend the observation period, and improving the development of standardized commercialized models and as well as their use. Overall, there are many opportunities and challenges in the development of humanized immune system mouse models which can provide novel strategies for understanding the mechanisms and treatments of human disease.


Assuntos
Leucócitos Mononucleares , Camundongos , Humanos , Animais , Camundongos SCID , Camundongos Endogâmicos NOD , Camundongos Nus , Modelos Animais de Doenças , Camundongos Knockout
9.
Front Immunol ; 13: 986239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189303

RESUMO

Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease that primarily affects women. Currently, in the search for the mechanisms of SLE pathogenesis, the association of lifestyle factors such as diet, cigarette smoking, ultraviolet radiation exposure, alcohol and caffeine-rich beverage consumption with SLE susceptibility has been systematically investigated. The cellular and molecular mechanisms mediating lifestyle effects on SLE occurrence, including interactions between genetic risk loci and environment, epigenetic changes, immune dysfunction, hyper-inflammatory response, and cytotoxicity, have been proposed. In the present review of the reports published in reputable peer-reviewed journals and government websites, we consider the current knowledge about the relationships between lifestyle factors and SLE incidence and outline directions of future research in this area. Formulation of practical measures with regard to the lifestyle in the future will benefit SLE patients and may provide potential therapy strategies.


Assuntos
Doenças Autoimunes , Fumar Cigarros , Lúpus Eritematoso Sistêmico , Doenças Autoimunes/complicações , Cafeína , Fumar Cigarros/efeitos adversos , Feminino , Humanos , Lúpus Eritematoso Sistêmico/genética , Raios Ultravioleta
10.
Eur J Med Res ; 27(1): 176, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088368

RESUMO

Hyperuricemia can induce acute and chronic kidney damage, but the pathological mechanism remains unclear. The potential role of AMP-activated protein kinase (AMPK) α2 in hyperuricemia-induced renal injury was investigated in this study. Acute and chronic hyperuricemic nephropathy was induced by administering intraperitoneal injections of uric acid and oxonic acid to AMPK α2 knockout and wild-type mice. Changes in renal function, histopathology, inflammatory cell infiltration, renal interstitial fibrosis, and urate deposition were analyzed. In both acute and chronic hyperuricemic nephropathy mouse models, knockout of AMPK α2 significantly reduced serum creatinine levels and renal pathological changes. The tubular expression of kidney injury molecule-1 was also reduced in hyperuricemic nephropathy mice deficient in AMPK α2. In addition, knockout of AMPK α2 significantly suppressed the infiltration of renal macrophages and progression of renal interstitial fibrosis in mice with chronic hyperuricemic nephropathy. Knockout of AMPK α2 reduced renal urate crystal deposition, probably through increasing the expression of the uric acid transporter, multidrug resistance protein 4. In summary, AMPK α2 is involved in acute and chronic hyperuricemia-induced kidney injury and may be associated with increased urate crystal deposition in the kidney.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hiperuricemia , Nefropatias , Falência Renal Crônica , Proteínas Quinases Ativadas por AMP/genética , Animais , Modelos Animais de Doenças , Fibrose , Hiperuricemia/induzido quimicamente , Hiperuricemia/genética , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Camundongos , Camundongos Knockout , Ácido Úrico/efeitos adversos , Ácido Úrico/metabolismo
12.
Lupus Sci Med ; 9(1)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35414608

RESUMO

OBJECTIVE: Lupus nephritis (LN) is a major complication and cause of death among patients with SLE. This research used in vivo and in vitro experiments to explore the therapeutic potential of metformin in kidney injury from LN-induced inflammation. METHODS: In vivo study, 8-week-old MRL/MpJ-Faslpr/J (MRL/lpr) mice were randomly divided into two groups (n=12 each): daily administration of 0.3 mg/mL metformin in drinking water and control (water only). Body weight and urinary samples were measured biweekly. Mice were sacrificed after 8-week treatment to harvest serum, lymph nodes, spleen and kidneys. In vitro study, human kidney-2 (HK-2) cells were pretreated with 1 mM metformin for 1 hour and then stimulated with 20 µg/mL lipopolysaccharides (LPS) or 10 ng/mL tumour necrosis factor-α (TNF-α) for another 48 hours. Protein was collected for subsequent analysis. RESULTS: We found that metformin administration improved renal function in MRL/lpr lupus-prone mice, measured by decreased urea nitrogen and urinary proteins. Metformin reduced immunoglobulin G and complement C3 deposition in glomeruli. The treatment also downregulated systemic and renal inflammation, as seen in decreased renal infiltration of F4/80-positive macrophages and reduced splenic and renal MCP-1 (monocyte chemoattractant protein-1) and TNF-α, and renal IL-1ß (interleukin 1ß) expression. Metformin administration decreased renal expression of necroptosis markers p-RIPK1 (phosphorylated receptor-interacting protein kinase 1) and p-MLKL, along with tubular injury marker KIM-1 (kidney injury molecule-1) in lupus mice. In addition, metformin alleviated the necroptosis of HK-2 cells stimulated by LPS and TNF-α, evidencing by a decrease in the expression of necroptosis markers p-RIPK1, p-RIPK3 and p-MLKL, and the inflammasome-related markers NLRP3 (NLR family pyrin domain containing 3), ASC (apoptosis-associated speck-like protein containing a CARD), caspase-1. Mechanistically, metformin treatment upregulated p-AMPK (phosphorylated AMP-activated protein kinase) and downregulated p-STAT3 (phosphorylated signal transducer and activator of transcription 3) expression in the kidneys. Moreover, AMPKα2 knockdown abolished the protective effects of metformin in vitro. CONCLUSIONS: Metformin alleviated kidney injury in LN though suppressing renal necroptosis and inflammation via the AMPK/STAT3 pathway.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Animais , Humanos , Inflamação , Rim/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Nefrite Lúpica/complicações , Nefrite Lúpica/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos MRL lpr , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia , Fator de Transcrição STAT3/uso terapêutico , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/uso terapêutico
13.
Arthritis Res Ther ; 24(1): 6, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980245

RESUMO

BACKGROUND: Hydroxychloroquine (HCQ) has been recommended as a basic treatment for lupus nephritis (LN) during this decade based on its ability to improve LN-related renal immune-mediated inflammatory lesions. As a classical lysosomal inhibitor, HCQ may inhibit lysosomal degradation and disrupt protective autophagy in proximal tubular epithelial cells (PTECs). Therefore, the final renal effects of HCQ on LN need to be clarified. METHOD: HCQ was administered on spontaneous female MRL/lpr LN mice with severe proteinuria daily for 4 weeks. Moreover, the MRL/lpr mice with proteinuric LN were subjected to cisplatin-induced or unilateral ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) after 2 weeks of HCQ preadministration. RESULTS: As expected, HCQ treatment increased the survival ratio and downregulated the levels of serum creatinine in the mice with LN, ameliorated renal lesions, and inhibited renal interstitial inflammation. Unexpectedly, HCQ preadministration significantly increased susceptibility to and delayed the recovery of AKI complicated by LN, as demonstrated by an increase in PTEC apoptosis and expression of the tubular injury marker KIM-1 as well as the retardation of PTEC replenishment. HCQ preadministration suppressed the proliferation of PTECs by arresting cells in G1/S phase and upregulated the expression of cell cycle inhibitors. Furthermore, HCQ preadministration disrupted the PTEC autophagy-lysosomal pathway and accelerated PTEC senescence. CONCLUSION: HCQ treatment may increase susceptibility and delay the recovery of AKI complicated by LN despite its ability to improve LN-related renal immune-mediated inflammatory lesions. The probable mechanism involves accelerated apoptosis and inhibited proliferation of PTECs via autophagy-lysosomal pathway disruption and senescence promotion.


Assuntos
Injúria Renal Aguda , Nefrite Lúpica , Injúria Renal Aguda/induzido quimicamente , Animais , Feminino , Hidroxicloroquina/farmacologia , Rim/patologia , Camundongos , Camundongos Endogâmicos MRL lpr
14.
Front Immunol ; 12: 799788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925385

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that was traditionally thought to be closely related to genetic and environmental risk factors. Although treatment options for SLE with hormones, immunosuppressants, and biologic drugs are now available, the rates of clinical response and functional remission of these drugs are still not satisfactory. Currently, emerging evidence suggests that gut microbiota dysbiosis may play crucial roles in the occurrence and development of SLE, and manipulation of targeting the gut microbiota holds great promises for the successful treatment of SLE. The possible mechanisms of gut microbiota dysbiosis in SLE have not yet been well identified to date, although they may include molecular mimicry, impaired intestinal barrier function and leaky gut, bacterial biofilms, intestinal specific pathogen infection, gender bias, intestinal epithelial cells autophagy, and extracellular vesicles and microRNAs. Potential therapies for modulating gut microbiota in SLE include oral antibiotic therapy, fecal microbiota transplantation, glucocorticoid therapy, regulation of intestinal epithelial cells autophagy, extracellular vesicle-derived miRNA therapy, mesenchymal stem cell therapy, and vaccination. This review summarizes novel insights into the mechanisms of microbiota dysbiosis in SLE and promising therapeutic strategies, which may help improve our understanding of the pathogenesis of SLE and provide novel therapies for SLE.


Assuntos
Disbiose/complicações , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Lúpus Eritematoso Sistêmico/microbiologia , Animais , Humanos , Lúpus Eritematoso Sistêmico/imunologia
15.
Front Physiol ; 12: 786599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950058

RESUMO

Nowadays, with the improvements in living standards and changes in living habits, high-fat diet (HFD) has become much more common in the populations worldwide. Recent studies have shown that HFD could induce lipid accumulation, and structural and functional abnormalities, accompanied by the release of large amounts of pro-inflammatory cytokines, in proximal tubular epithelial cells (PTECs). These findings indicate that, as an emerging risk factor, PTEC injury-induced by HFD may be closely related to inflammation; however, the potential mechanisms underlying this phenomenon is still not well-known, but may involve the several inflammatory pathways, including oxidative stress-related signaling pathways, mitochondrial dysfunction, the myeloid differentiation factor 2/Toll like receptor 4 (MD2/TLR4) signaling pathway, the ERK1/2-kidney injury molecule 1 (KIM-1)-related pathway, and nuclear factor-κB (NF-κB) activation, etc., and the detailed molecular mechanisms underlying these pathways still need further investigated in the future. Based on lipid abnormalities-induced inflammation is closely related to the development and progression of chronic kidney disease (CKD), to summarize the potential mechanisms underlying HFD-induced renal proximal tubular inflammatory injury, may provide novel approaches for CKD treatment.

16.
Front Immunol ; 12: 728190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659214

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Although previous studies have demonstrated that SLE is related to the imbalance of cells in the immune system, including B cells, T cells, and dendritic cells, etc., the mechanisms underlying SLE pathogenesis remain unclear. Therefore, effective and low side-effect therapies for SLE are lacking. Recently, mesenchymal stem cell (MSC) therapy for autoimmune diseases, particularly SLE, has gained increasing attention. This therapy can improve the signs and symptoms of refractory SLE by promoting the proliferation of Th2 and Treg cells and inhibiting the activity of Th1, Th17, and B cells, etc. However, MSC therapy is also reported ineffective in some patients with SLE, which may be related to MSC- or patient-derived factors. Therefore, the therapeutic effects of MSCs should be further confirmed. This review summarizes the status of MSC therapy in refractory SLE treatment and potential reasons for the ineffectiveness of MSC therapy from three perspectives. We propose various MSC modification methods that may be beneficial in enhancing the immunosuppression of MSCs in SLE. However, their safety and protective effects in patients with SLE still need to be confirmed by further experimental and clinical evidence.


Assuntos
Lúpus Eritematoso Sistêmico/cirurgia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Imunidade Adaptativa , Animais , Microambiente Celular , Humanos , Tolerância Imunológica , Imunidade Inata , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Resultado do Tratamento
18.
J Cell Mol Med ; 25(12): 5729-5743, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949118

RESUMO

Cyclosporine A (CsA) is an immunosuppressor widely used for the prevention of acute rejection during solid organ transplantation. However, severe nephrotoxicity has substantially limited its long-term usage. Recently, an impaired autophagy pathway was suggested to be involved in the pathogenesis of chronic CsA nephrotoxicity. However, the underlying mechanisms of CsA-induced autophagy blockade in tubular cells remain unclear. In the present study, we observed that CsA suppressed the activation and expression of transcription factor EB (TFEB) by increasing the activation of mTOR, in turn promoting lysosomal dysfunction and autophagy flux blockade in tubular epithelial cells (TECs) in vivo and in vitro. Restoration of TFEB activation by Torin1-mediated mTOR inhibition significantly improved lysosomal function and rescued autophagy pathway activity, suppressing TEC injury. In summary, targeting TFEB-mediated autophagy flux represents a potential therapeutic strategy for CsA-induced nephrotoxicity.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclosporina/toxicidade , Células Epiteliais/patologia , Túbulos Renais/patologia , Lisossomos/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Imunossupressores/toxicidade , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Serina-Treonina Quinases TOR/genética
19.
J Cell Mol Med ; 25(5): 2703-2713, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605079

RESUMO

Acute kidney injury (AKI) is the main obstacle that limits the use of cisplatin in cancer treatment. Proton pump inhibitors (PPIs), the most commonly used class of medications for gastrointestinal complications in cancer patients, have been reported to cause adverse renal events. However, the effect of PPIs on cisplatin-induced AKI remains unclear. Herein, the effect and mechanism of lansoprazole (LPZ), one of the most frequently prescribed PPIs, on cisplatin-induced AKI were investigated in vivo and in vitro. C57BL/6 mice received a single intraperitoneal (i.p.) injection of cisplatin (18 mg/kg) to induce AKI, and LPZ (12.5 or 25 mg/kg) was administered 2 hours prior to cisplatin administration and then once daily for another 2 days via i.p. injection. The results showed that LPZ significantly aggravated the tubular damage and further increased the elevated levels of serum creatinine and blood urea nitrogen induced by cisplatin. However, LPZ did not enhance cisplatin-induced tubular apoptosis, as evidenced by a lack of significant change in mRNA and protein expression of Bax/Bcl-2 ratio and TUNEL staining. Notably, LPZ increased the number of necrotic renal tubular cells compared to that by cisplatin treatment alone, which was further confirmed by the elevated necroptosis-associated protein expression of RIPK1, p-RIPK3 and p-MLKL. Furthermore, LPZ deteriorated cisplatin-induced inflammation, as revealed by the increased mRNA expression of pro-inflammatory factors including, NLRP3, IL-1ß, TNF-α and caspase 1, as well as neutrophil infiltration. Consistently, in in vitro study, LPZ increased HK-2 cell death and enhanced inflammation, compared with cisplatin treatment alone. Collectively, our results demonstrate that LPZ aggravates cisplatin-induced AKI, and necroptosis may be involved in the exacerbation of kidney damage.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Necrose Tubular Aguda/etiologia , Necrose Tubular Aguda/metabolismo , Lansoprazol/efeitos adversos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Necrose Tubular Aguda/patologia , Camundongos
20.
Front Immunol ; 12: 816956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35116040

RESUMO

Animal models have played a crucial role in the understanding of the mechanisms and treatments of human diseases; however, owing to the large differences in genetic background and disease-specific characteristics, animal models cannot fully simulate the occurrence and progression of human diseases. Recently, humanized immune system mice, based on immunodeficient mice, have been developed that allow for the partial reconstruction of the human immune system and mimic the human in vivo microenvironment. Systemic lupus erythematosus (SLE) is a complex disease characterized by the loss of tolerance to autoantigens, overproduction of autoantibodies, and inflammation in multiple organ systems. The detailed immunological events that trigger the onset of clinical manifestations in patients with SLE are still not well known. Two methods have been adopted for the development of humanized SLE mice. They include transferring peripheral blood mononuclear cells from patients with SLE to immunodeficient mice or transferring human hematopoietic stem cells to immunodeficient mice followed by intraperitoneal injection with pristane to induce lupus. However, there are still several challenges to be overcome, such as how to improve the efficiency of reconstruction of the human B cell immune response, how to extend the lifespan and improve the survival rate of mice to extend the observation period, and how to improve the development of standardized commercialized models and use them. In summary, there are opportunities and challenges for the development of humanized mouse models of SLE, which will provide novel strategies for understanding the mechanisms and treatments of SLE.


Assuntos
Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos Transgênicos , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Doenças Autoimunes , Autoimunidade , Biomarcadores , Gerenciamento Clínico , Suscetibilidade a Doenças/imunologia , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/terapia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA