Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612624

RESUMO

The Wheat Initiative (WI) and the WI Expert Working Group (EWG) for Agronomy (www.wheatinitiative.org) were formed with a collective goal to "coordinate global wheat research efforts to increase wheat production, quality, and sustainability to advance food security and safety under changing climate conditions." The Agronomy EWG is responsive to the WI's research need, "A knowledge exchange strategy to ensure uptake of innovations on farm and to update scientists on changing field realities." The Agronomy EWG aims to consolidate global expertise for agronomy with a focus on wheat production systems. The overarching approach is to develop and adopt a systems-agronomy framework relevant to any wheat production system. It first establishes the scale of current yield gaps, identifies defensible benchmarks, and takes a holistic approach to understand and overcome exploitable yield gaps to complement genetic increases in potential yield. New opportunities to increase productivity will be sought by exploiting future Genotype × Environment × Management synergies in different wheat systems. To identify research gaps and opportunities for collaboration among different wheat producing regions, the EWG compiled a comprehensive database of currently funded wheat agronomy research (n = 782) in countries representing a large proportion of the wheat grown in the world. The yield gap analysis and research database positions the EWG to influence priorities for wheat agronomy research in member countries that would facilitate collaborations, minimize duplication, and maximize the global impact on wheat production systems. This paper outlines a vision for a global WI agronomic research strategy and discusses activities to date. The focus of the WI-EWG is to transform the agronomic research approach in wheat cropping systems, which will be applicable to other crop species.

2.
J Geophys Res Biogeosci ; 124(7): 1887-1904, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31598447

RESUMO

With the addition of nitrogen (N), agricultural soils are the main anthropogenic source of N2O, but high spatial and temporal variabilities make N2O emissions difficult to characterize at the field scale. This study used flux-gradient measurements to continuously monitor N2O emissions at two agricultural fields under different management regimes in the inland Pacific Northwest of Washington State, USA. Automated 16-chamber arrays were also deployed at each site; chamber monitoring results aided the interpretation of the flux gradient results. The cumulative emissions over the six-month (1 April-30 September) monitoring period were 2.4 ± 0.7 and 2.1 ± 2 kg N2O-N/ha at the no-till and conventional till sites, respectively. At both sites, maximum N2O emissions occurred following the first rainfall event after N fertilization, and both sites had monthlong emission pulses. The no-till site had a larger N2O emission factor than the Intergovernmental Panel on Climate Change Tier 1 emission factor of 1% of the N input, while the conventional-till site's emission factor was close to 1% of the N input. However, these emission factors are likely conservative. We estimate that the global warming potential of the N2O emissions at these sites is larger than that of the no-till conversion carbon uptake. We recommend the use of chambers to investigate spatiotemporal controls as a complementary method to micrometeorological monitoring, especially in systems with high variability. Continued monitoring coupled with the use of models is necessary to investigate how changing management and environmental conditions will affect N2O emissions.

3.
Front Plant Sci ; 10: 1790, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32158450

RESUMO

Improvements in market value of hard red spring wheat (HRS, Triticum aestivum L.) are linked to breeding efforts to increase grain protein concentration (GPC). Numerous studies have been conducted on the identification, isolation of a chromosome region (Gpc-B1) of Wild emmer wheat (Triticum turgidum spp. dicoccoides) and its introgression into commercial hard wheat to GPC. Yet there has been limited research published on the comparative responsiveness of these altered lines and their parents to varied N supply. There is increased awareness that wheat genetic improvements must be assessed over a range of environmental and agronomic management conditions to assess stability. We report herein on economically optimal yield, protein and nitrogen use efficiency (NUE) component responses of two Pacific Northwestern USA cultivars, Tara and Scarlet compared to backcrossed derived near isolines with or without the Gpc-B1 allele. A field experiment with 5 N rates as whole plots and 8 genotypes as subplots was conducted over two years under semi-arid, dryland conditions. One goal was to evaluate the efficacy of the Gpc-B1 allele under a range of low to high N supply. Across all genotypes, grain yield responses to N supply followed the classic Mitscherlich response model, whereas GPC followed inverse quadratic or linear responses. The Gpc-B1 introgression had no major impact on grain protein, but grain N and total above ground crop N yields demonstrated quadratic responses to total N supply. Generally, higher maximum grain yields and steeper rise to the maxima (Mitscherlich c values) were obtained in the first site-year. Tara required less N supply to achieve GPC goals than Scarlet in both site-years. Genotypes with Gpc-B1 produced comparable or slightly lower Mitscherlich A values than unmodified genotypes, but displayed similar Mitscherlich c values. Target GPC goals were not achieved at economic optimal yields based on set wheat pricing. Economic optimization of N inputs to achieve protein goals showed positive revenue from additional N inputs for most genotypes. While N uptake efficiency did not drop below 0.40, N fertilizer-induced increases in grain N harvest correlated well with unused post-harvest soil N that is potentially susceptible to environmental loss.

4.
J Agric Food Chem ; 65(48): 10429-10438, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29112417

RESUMO

Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of nitrogen (N) and sulfur (S) fertilizer rate, soil water, and atmospheric temperature on canola (Brassica napus L.) fatty acid (FA), total oil, protein, and grain yield. Nitrogen and sulfur were assessed in a 4-yr study with two locations, five N rates (0, 45, 90, 135, and 180 kg ha-1), and two S rates (0 and 17 kg ha-1). Water and temperature were assessed using variability across 12 site-years of dryland canola production. Effects of N and S were inconsistent. Unsaturated FA, oleic acid, grain oil, protein, and theoretical maximum grain yield were highly related to water and temperature variability across the site-years. A nonlinear model identified water and temperature conditions that enabled production of maximum unsaturated FA content, oleic acid content, total oil, protein, and theoretical maximum grain yield. Water and temperature variability played a larger role than soil nutrient status on canola grain constituents and yield.


Assuntos
Brassica napus/metabolismo , Ácidos Graxos/biossíntese , Nitrogênio/metabolismo , Proteínas de Plantas/biossíntese , Enxofre/metabolismo , Água/metabolismo , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Fertilizantes/análise , Solo/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA